Aspirin and salicylic acid do not inhibit methyl jasmonate-inducible expression of a gene for ornithine decarboxylase in tobacco BY-2 cells. (25/1096)

Similar to the prostanoid-mediated inflammatory response in mammals, jasmonate-mediated wound response in plant leaves is inhibited by salicylic acid (SA) or acetylsalicylate (aspirin). In tobacco BY-2 cells, expression of the gene for ornithine decarboxylase (ODC) involved in putrescine synthesis is rapidly inducible by methyl jasmonate (MeJA). A nuclear gene for ODC isolated from tobacco, gNtODC-1, was an intron-less gene and MeJA induced the expression of a GUS fusion gene with the gNtODC-1 promoter in transformed tobacco cells. Although SA alone did not induce the expression, 0.2 to 20 microM SA increased the MeJA-induced expression of the fusion gene to about two-fold. A similar increase was observed with aspirin but not with 3- or 4-hydroxybenzoic acids. SA at concentrations up to 200 microM did not inhibit the MeJA-induction of mRNAs for the GUS fusion gene and the endogenous gene for ODC.  (+info)

Identification of Arabidopsis mutants exhibiting an altered hypersensitive response in gene-for-gene disease resistance. (26/1096)

A mutational study was carried out to isolate Arabidopsis thaliana plants that exhibit full or partial disruption of the RPS2-mediated hypersensitive response (HR) to Pseudomonas syringae that express avrRpt2. Five classes of mutants were identified including mutations at RPS2, dnd mutations causing a "defense, no death" loss-of-HR phenotype, a lesion-mimic mutant that also exhibited an HR- phenotype, and a number of intermediate or partial-loss-of-HR mutants. Surprisingly, many of these mutants displayed elevated resistance to virulent P. syringae and, in some cases, to Peronospora parasitica. Constitutively elevated levels of pathogenesis-related (PR) gene expression and salicylic acid were also observed. In the lesion-mimic mutant, appearance of elevated resistance was temporally correlated with appearance of lesions. For one of the intermediate lines, resistance was shown to be dependent on elevated levels of salicylic acid. A new locus was identified and named IHR1, after the mutant phenotype of "intermediate HR." Genetic analysis of the intermediate-HR plant lines was difficult due to uncertainties in distinguishing the partial/intermediate mutant phenotypes from wild type. Despite this difficulty, the intermediate-HR mutants remain of interest because they reveal potential new defense-related loci and because many of these lines exhibit partially elevated disease resistance without dwarfing or other apparent growth defects.  (+info)

Differential induction of tobacco MAP kinases by the defense signals nitric oxide, salicylic acid, ethylene, and jasmonic acid. (27/1096)

In tobacco, two mitogen-activated protein (MAP) kinases, designated salicylic acid (SA)-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK) are activated in a disease resistance-specific manner following pathogen infection or elicitor treatment. To investigate whether nitric oxide (NO), SA, ethylene, or jasmonic acid (JA) are involved in this phenomenon, the ability of these defense signals to activate these kinases was assessed. Both NO and SA activated SIPK; however, they did not activate WIPK. Additional analyses with transgenic NahG tobacco revealed that SA is required for the NO-mediated induction of SIPK. Neither JA nor ethylene activated SIPK or WIPK. Thus, SIPK may function downstream of SA in the NO signaling pathway for defense responses, while the signals responsible for resistance-associated WIPK activation have yet to be determined.  (+info)

Salicylic acid mediated by the oxidative burst is a key molecule in local and systemic responses of cotton challenged by an avirulent race of Xanthomonas campestris pv malvacearum. (28/1096)

We analyzed the production of reactive oxygen species, the accumulation of salicylic acid (SA), and peroxidase activity during the incompatible interaction between cotyledons of the cotton (Gossypium hirsutum) cv Reba B50/Xanthomonas campestris pv malvacearum (Xcm) race 18. SA was detected in petioles of cotyledons 6 h after infection and 24 h post inoculation in cotyledons and untreated leaves. The first peak of SA occurred 3 h after generation of superoxide (O(2)(.-)), and was inhibited by infiltration of catalase. Peroxidase activity and accumulation of SA increased in petioles of cotyledons and leaves following H(2)O(2) infiltration of cotyledons from 0.85 to 1 mM. Infiltration of 2 mM SA increased peroxidase activity in treated cotyledons and in the first leaves, but most of the infiltrated SA was rapidly conjugated within the cotyledons. When increasing concentrations of SA were infiltrated 2. 5 h post inoculation at the beginning of the oxidative burst, the activity of the apoplastic cationic O(2)(.-)-generating peroxidase decreased in a dose-dependent manner. We have shown that during the cotton hypersensitive response to Xcm, H(2)O(2) is required for local and systemic accumulation of SA, which may locally control the generation of O(2)(.-). Detaching cotyledons at intervals after inoculation demonstrated that the signal leading to systemic accumulation of SA was emitted around 3 h post inoculation, and was associated with the oxidative burst. SA produced 6 h post infection at HR sites was not the primary mobile signal diffusing systemically from infected cotyledons.  (+info)

The salicylate metabolite gentisic acid, but not the parent drug, inhibits glucose autoxidation-mediated atherogenic modification of low density lipoprotein. (29/1096)

Oxidation of low density lipoprotein (LDL) by glucose-derived radicals may play a role in the aetiology of atherosclerosis in diabetes. Salicylate was shown to scavenge certain radicals. In the present study, aspirin, salicylate and its metabolites 2,5- and 2, 3-dihydroxybenzoic acid (DHBA) were tested for their ability to impair LDL oxidation by glucose. Only the DHBA derivatives, when present during LDL modification, inhibited LDL oxidation and the increase in endothelial tissue factor synthesis induced by glucose oxidised LDL. The LDL glycation reaction was not affected by DHBA. The antioxidative action of DHBA may be attributed to free radical scavenging and/or chelation of transition metal ions catalysing glucose autoxidation.  (+info)

Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. (30/1096)

In higher plants, activating sequence-1 (as-1) of the cauliflower mosaic virus 35 S promoter mediates both salicylic acid (SA)- and auxin-inducible transcriptional activation. Originally found in promoters of several viral and bacterial plant pathogens, as-1-like elements are also functional elements of plant promoters activated in the course of a defense response upon pathogen attack. Nuclear as-1-binding factor (ASF-1) and cellular salicylic acid response protein (SARP) bind specifically to as-1. Four different tobacco bZIP transcription factors (TGA1a, PG13, TGA2.1, and TGA2.2) are potential components of either ASF-1 or SARP. Here we show that ASF-1 and SARP are very similar in their composition. TGA2.2 is a major component of either complex, as shown by supershift analysis and Western blot analysis of DNA affinity-purified SARP. Minor amounts of a protein immunologically related to TGA2.1 were detected, whereas TGA1a was not detectable. Overexpression of either TGA2.2 or a dominant negative TGA2.2 mutant affected both SA and auxin (2, 4D) inducibility of various target promoters encoding as-1-like elements, albeit to different extents. This indicates that TGA2.2 is a component of the enhancosome assembling on these target promoters, both under elevated SA and 2,4D concentrations. However, the effect of altered TGA2.2 levels on gene expression was more pronounced upon SA treatment than upon 2,4D treatment.  (+info)

Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. (31/1096)

We have characterized the role of salicylic acid (SA)-independent defense signaling in Arabidopsis thaliana in response to the plant pathogen Erwinia carotovora subsp. carotovora. Use of pathway-specific target genes as well as signal mutants allowed us to elucidate the role and interactions of ethylene, jasmonic acid (JA), and SA signal pathways in this response. Gene expression studies suggest a central role for both ethylene and JA pathways in the regulation of defense gene expression triggered by the pathogen or by plant cell wall-degrading enzymes (CF) secreted by the pathogen. Our results suggest that ethylene and JA act in concert in this regulation. In addition, CF triggers another, strictly JA-mediated response inhibited by ethylene and SA. SA does not appear to have a major role in activating defense gene expression in response to CF. However, SA may have a dual role in controlling CF-induced gene expression, by enhancing the expression of genes synergistically induced by ethylene and JA and repressing genes induced by JA alone.  (+info)

Expression of allene oxide synthase determines defense gene activation in tomato. (32/1096)

Allene oxide synthase (AOS; hydroperoxide dehydratase; EC 4.2.1.92) catalyzes the first step in the biosynthesis of jasmonic acid from lipoxygenase-derived hydroperoxides of free fatty acids. Using the AOS cDNA from tomato (Lycopersicon esculentum), in which the role of jasmonic acid in wound-induced defense gene activation has been best described, we examined the kinetics of AOS induction in response to wounding and elicitors, in parallel with that of the wound-inducible PIN II (proteinase inhibitor II) gene. AOS was induced in leaves by wounding, systemin, 12-oxophytodienoic acid, and methyl jasmonate. The levels of AOS mRNA started declining by 4 h after induction, whereas the levels of PIN II mRNA continued to increase up to 20 h after induction. Salicylic acid inhibited AOS and PIN II expression, and the addition of 12-oxophytodienoic acid or methyl jasmonate did not prevent the inhibition of PIN II expression in the presence of salicylic acid. Ethylene induced the expression of AOS, but the presence of ethylene alone did not produce an optimal induction of PIN II. The addition of silver thiosulfate, an ethylene action inhibitor, prevented the wound-induced expression of both AOS and PIN II. Products of hydroperoxide lyase affected neither AOS nor PIN II, but induced expression of prosystemin. Based on these results, we propose an updated model for defense gene activation in tomato.  (+info)