Inhibitory nature of tiagabine-augmented GABAA receptor-mediated depolarizing responses in hippocampal pyramidal cells. (1/174)

Tiagabine is a potent GABA uptake inhibitor with demonstrated anticonvulsant activity. GABA uptake inhibitors are believed to produce their anticonvulsant effects by prolonging the postsynaptic actions of GABA, released during episodes of neuronal hyperexcitability. However, tiagabine has recently been reported to facilitate the depolarizing actions of GABA in the CNS of adult rats following the stimulation of inhibitory pathways at a frequency (100 Hz) intended to mimic interneuronal activation during epileptiform activity. In the present study, we performed extracellular and whole cell recordings from CA1 pyramidal neurons in rat hippocampal slices to examine the functional consequences of tiagabine-augmented GABA-mediated depolarizing responses. Orthodromic population spikes (PSs), elicited from the stratum radiatum, were inhibited following the activation of recurrent inhibitory pathways by antidromic conditioning stimulation of the alveus, which consisted of either a single stimulus or a train of stimuli delivered at high-frequency (100 Hz, 200 ms). The inhibition of orthodromic PSs produced by high-frequency conditioning stimulation (HFS), which was always of much greater strength and duration than that produced by a single conditioning stimulus, was greatly enhanced following the bath application of tiagabine (2-100 microM). Thus, in the presence of tiagabine (20 microM), orthodromic PSs, evoked 200 and 800 ms following HFS, were inhibited to 7.8 +/- 2.6% (mean +/- SE) and 34.4 +/- 18.5% of their unconditioned amplitudes compared with only 35.4 +/- 12.7% and 98.8 +/- 12.4% in control. Whole cell recordings revealed that the bath application of tiagabine (20 microM) either caused the appearance or greatly enhanced the amplitude of GABA-mediated depolarizing responses (DR). Excitatory postsynaptic potentials (EPSPs) evoked from stratum radiatum at time points that coincided with the DR were inhibited to below the threshold for action-potential firing. Independently of the stimulus intensity with which they were evoked, the charge transferred to the soma by excitatory postsynaptic currents (EPSCs), elicited in the presence of tiagabine (20 microM) during the large (1,428 +/- 331 pA) inward currents that underlie the DRs, was decreased on the average by 90.8 +/- 1.7%. Such inhibition occurred despite the presence of the GABAB receptor antagonist, CGP 52 432 (10 microM), indicating that GABAB heteroreceptors, located on glutamatergic terminals, do not mediate the observed reduction in the amplitude of excitatory postsynaptic responses. The present results suggest that despite facilitating the induction of GABA-mediated depolarizations, tiagabine application may nevertheless increase the effectiveness of synaptic inhibition during the synchronous high-frequency activation of inhibitory interneurons by enhanced shunting.  (+info)

Clinical and EEG findings in complex partial status epilepticus with tiagabine. (2/174)

A case of complex partial status epilepticus (CPSE) with high dose treatment of tiagabine (TGB) is reported. Seizure aggravation and CPSE developed after stepwise increase of TGB to a dose of 60 mg per day as add-on treatment to carbamazepine (CBZ) 1200 mg/day and vigabatrine (VGB) 1000 mg/day. The EEG during CPSE showed bilateral rhythmic slow activity. Clinical symptoms of CPSE and the EEG normalized after i.v. treatment with clonazepam. The literature and the possible mechanism of this paradoxical phenomenon are discussed.  (+info)

Cholinergic and GABAergic inputs drive patterned spontaneous motoneuron activity before target contact. (3/174)

Patterned spontaneous electrical activity has been demonstrated in a number of developing neural circuits and has been proposed to play a role in refining connectivity once axons reach their targets. Using an isolated spinal cord preparation, we have found that chick lumbosacral motor axons exhibit highly regular bursts of activity from embryonic day 4 (E4) (stage 24-25), shortly after they exit the spinal cord and while still en route toward their target muscles. Similar bursts could be evoked by stimulating descending pathways at cervical or thoracic levels. Unlike older embryonic cord circuits, the major excitatory transmitter driving activity was not glutamate but acetylcholine, acting primarily though nicotinic non-alpha7 receptors. The circuit driving bursting was surprisingly robust and plastic, because bursting was only transiently blocked by cholinergic antagonists, and following recovery, was now driven by GABAergic inputs. Permanent blockade of spontaneous activity was only achieved by a combination of cholinergic antagonists and bicuculline, a GABAA antagonist. The early occurrence of patterned motor activity suggests that it could be playing a role in either peripheral pathfinding or spinal cord circuit formation and maturation. Finally, the characteristic differences in burst parameters already evident between different motoneuron pools at E4 would require that the combination of transcription factors responsible for specifying pool identity to have acted even earlier.  (+info)

Differential effects on motorcortical inhibition induced by blockade of GABA uptake in humans. (4/174)

1. Blockade of uptake carriers of gamma-aminobutyric acid (GABA) has been shown to modulate inhibition in cortical slices of experimental animals, although little is known about this mechanism in vivo and, in particular, in humans. 2. The effects of blockade of GABA uptake were studied using transcranial magnetic stimulation (TMS) in humans. In eight healthy volunteers several measures of cortical excitation and inhibition were obtained before and approximately 2 h after ingestion of 5-15 mg of tiagabine (TGB). 3. After TGB ingestion, the duration of the TMS-induced silent period observable in the electromyogram of the voluntarily contracted target muscle was prolonged. Similarly, paired-pulse inhibition of the motor-evoked potential (MEP), as tested by delivering two magnetic shocks of equal suprathreshold intensities at 160 ms interstimulus interval (ISI), was more pronounced. In apparent contradistinction, paired-pulse inhibition of the MEPs produced by a subthreshold conditioning stimulus delivered 3 ms prior to a suprathreshold stimulus was reduced. Paired-pulse facilitation elicited by the same double-shock protocol at an ISI of 10 ms was increased. 4. The prolongation of the GABAB receptor-mediated component of the inhibitory postsynaptic potential observed with TGB in in vitro studies probably underlies the increase in cortical silent period duration. The reduction of the paired-pulse inhibition at 3 ms, in turn, probably reflects inhibition of GABAA receptor-mediated inhibition via presynaptic GABAB receptors. 5. These data provide in vivo evidence of differential modulation of cortical inhibition by blockade of GABA uptake. Presynaptic GABA autoreceptors may be involved in modulating cortical inhibition in the human motor cortex.  (+info)

Passive water and ion transport by cotransporters. (5/174)

1. The rabbit Na+-glucose (SGLT1) and the human Na+-Cl--GABA (GAT1) cotransporters were expressed in Xenopus laevis oocytes, and passive Na+ and water transport were studied using electrical and optical techniques. Passive water permeabilities (Lp) of the cotransporters were determined from the changes in oocyte volume in response to osmotic gradients. The specific SGLT1 and GAT1 Lp values were obtained by measuring Lp in the presence and absence of blockers (phlorizin and SKF89976A). In the presence of the blockers, the Lp values of oocytes expressing SGLT1 and GAT1 were indistinguishable from the Lp of control oocytes. Passive Na+ transport (Na+ leak) was obtained from the blocker-sensitive Na+ currents in the absence of substrates (glucose and GABA). 2. Passive Na+ and water transport through SGLT1 were blocked by phlorizin with the same sensitivity (inhibitory constant (Ki), 3-5 microM). When Na+ was replaced with Li+, phlorizin also inhibited Li+ and water transport, but with a lower affinity (Ki, 100 microM). When Na+ was replaced by choline, which is not transported, the SGLT1 Lp was indistinguishable from that in Na+ or Li+, but in this case water transport was less sensitive to phlorizin. 3. The activation energies (Ea) for passive Na+ and water transport through SGLT1 were 21 and 5 kcal mol-1, respectively. The high Ea for Na+ transport is comparable to that of Na+-glucose cotransport and indicates that the process is dependent on conformational changes of the protein, while the low Ea for water transport is similar to that of water channels (aquaporins). 4. GAT1 also behaved as an SKF89976A-sensitive water channel. We did not observe passive Na+ transport through GAT1. 5. We conclude that passive water and Na+ transport through cotransporters depend on different mechanisms: Na+ transport occurs by a saturable uniport mechanism, and water permeation is through a low conductance water channel. In the case of SGLT1, we suggest that both the water channel and water cotransport could contribute to isotonic fluid transport across the intestinal brush border membrane.  (+info)

Tiagabine-induced absence status in idiopathic generalized epilepsy. (6/174)

Several medications such as baclofen, amitriptyline and even antiepileptic drugs such as carbamazepine or vigabatrin are known to induce absence status epilepticus in patients with generalized epilepsies. Tiagabine (TGB) is effective in patients with focal epilepsies. However, TGB has also been reported to induce non-convulsive status epilepticus in several patients with focal epilepsies and in one patient with juvenile myoclonic epilepsy. In animal models of generalized epilepsy, TGB induces absence status with 3-5 Hz spike-wave complexes. We describe a 32-year-old patient with absence epilepsy and primary generalized tonic-clonic seizures since 11 years of age, who developed her first absence status epilepticus while treated with 45 mg of TGB daily. Administration of lorazepam and immediate reduction in TGB dosage was followed by complete clinical and electroencephalographic remission. This case demonstrates that TGB can induce typical absence status epilepticus in a patient with primary generalized epilepsy.  (+info)

Inhibition of uptake, steady-state currents, and transient charge movements generated by the neuronal GABA transporter by various anticonvulsant drugs. (7/174)

1. We have expressed the GABA transporter (GAT1) of mouse brain in Xenopus oocytes and have investigated the effects of four antiepileptic drugs, tiagabine (TGB), vigabatrin (VGB), gabapentin (GBP) and valproate (VAL), on GAT1 transporter function by measurements of 3H-labelled GABA uptake and GAT1-mediated currents. 2. Not only TGB, a well-known inhibitor of GAT1-mediated transport, but also the other drugs efficiently inhibit the uptake of [3H]-GABA by GAT1. Inhibition at 50% is obtained for VGB, TGB, GBP, and VAL at concentrations of about 1 nM, 1 microM, 50 microM and 100 microM, respectively. 3. However, GAT1-mediated steady-state and transient currents are nearly unaffected by VGB, GBP, and VAL at even five times higher concentrations. Only TGB blocks the uptake and steady-state and transient currents at micromolar concentrations. 4. VGB exhibits a complex interaction with GAT1; at concentrations about 1 nM, the inhibition of uptake is released, but at millimolar concentrations the uptake is inhibited again, and also the GAT1-mediated current is finally inhibited at these concentrations with a KI value of 0.5 mM. The concentration dependency of inhibition of uptake can be explained by two interaction sites with different affinities, a blocking site and a transport site. 5. The differences in effects of VAL, GBP, and VGB on uptake and currents can be attributed to the fact that GAT1 has the capability to operate in an electrogenic mode without uptake of GABA. We suggest that inhibition occurs only when GAT1 operates in the GABA-uptake mode. 6. The inhibition of GABA uptake by these four drugs will result in an elevation of the GABA concentration in the synaptic cleft, which will enhance synaptic inhibition and thereby contribute to their antiepileptic effects.  (+info)

Optical imaging reveals elevated intracellular chloride in hippocampal pyramidal neurons after oxidative stress. (8/174)

The accumulation of reactive oxygen species (ROS) in the brain is associated with several neurodegenerative conditions. ROS can affect ionic homeostasis leading to impaired neurotransmission. Here, we determined the ability of H(2)O(2), a membrane permeant ROS, to alter intraneuronal Cl(-), an important regulator of neuronal excitability. Real-time alterations in intracellular chloride, [Cl(-)]i, were measured with UV laser scanning confocal microscopy in hippocampal slices loaded with the cell-permeant form of 6-methoxy-N-ethylquinolium iodide (MEQ), a Cl(-)-sensitive fluorescent probe. In slices superfused with H(2)O(2) for 10 min, there was a significant decrease in MEQ fluorescence (elevation in [Cl(-)]i) in area CA1 pyramidal cell soma but not in interneurons located in stratum radiatum. Alterations in [Cl(-)]i induced by H(2)O(2) were prevented by the iron chelator deferoxamine and the vitamin E analog Trolox, suggesting the involvement of free radicals. The influx of Cl(-) probably occurred through the GABA-gated Cl(-) channel because the effects of H(2)O(2) were blocked by picrotoxin. In addition, HPLC analysis of the superfusates indicated that GABA and glutamate accumulated extracellularly after H(2)O(2) exposure. Excitatory amino acid receptor antagonists 2-amino-5-phoshopentanoic acid and 1,2,3,4-tetrahydro-6-nitro-2, 3-dioxo-benzo[f]quinoxaline-7-sulfonamide also attenuated the effect of H(2)O(2) on MEQ fluorescence. The changes in [Cl(-)]i induced by H(2)O(2) were Ca(2+)-dependent and Na(+)-independent. After exposure of slices to H(2)O(2), the ability of the GABA agonist muscimol to increase [Cl(-)]i was attenuated. Thus, ROS, like H(2)O(2), may impair transmembrane Cl(-) gradients and reduce inhibitory neurotransmission, further promoting neuronal damage in oxidative stress-related disease and in aging.  (+info)