Substrate specificity of catechol oxidase from Lycopus europaeus and characterization of the bioproducts of enzymic caffeic acid oxidation. (1/401)

The substrate specificity of catechol oxidase from Lycopus europaeus towards phenols is examined. The enzyme catalyzes the oxidation of o-diphenols to o-quinones without hydroxylating monophenols, the additional activity of tyrosinase. Substrates containing a -COOH group are inhibitors for catechol oxidase. The products of enzymic oxidation of caffeic acid were analyzed and isolated by HPLC with diode array detection. The neolignans of the 2,3-dihydro-1,4-benzodioxin type (3, 6-8), 6,7-dihydroxy-1-(3,4-dihydroxyphenyl)-2,3-dicarboxy-1,2-dihydro naphthaline (1) 6,7-dihydroxy-1-(3,4-dihydroxyphenyl)-3-carboxynaphthaline (5) and 2,6-bis-(3',4'-dihydroxyphenyl)-1-carboxy-3-oxacyclo-(3,0)-pent an-2-on-1-ene (4) were formed. A reaction mechanism for the formation of (1, 4 and 5) is discussed.  (+info)

Dehydrodicaffeic acid dilactone, an inhibitor of catechol-O-methyl transferase. (2/401)

In the screening of catechol-O-methyltransferase inhibitors, three compounds were isolated from the culture filtrate of a mushroom, Inonotus sp. One was 3,4-dihydroxycinnamic acid (caffeic acid) which had been reported as an inhibitor of this enzyme. The others were the dextrorotatory 2,6-bis-(3',4'-dihydroxyphenyl)-3,7-dioxabicyclo-[3,3,0]-octane 4,8-dione (dehydrodicaffeic acid dilactone) andits antipode. These new compounds inhibited both dopamine beta-hydroxylase and dopa decarboxylase and showed hypotensive activity in the SH rat.  (+info)

Inhibitory effects of caffeic acid phenethyl ester on the activity and expression of cyclooxygenase-2 in human oral epithelial cells and in a rat model of inflammation. (3/401)

We investigated the mechanisms by which caffeic acid phenethyl ester (CAPE), a phenolic antioxidant, inhibited the stimulation of prostaglandin (PG) synthesis in cultured human oral epithelial cells and in an animal model of acute inflammation. Treatment of cells with CAPE (2.5 microg/ml) suppressed phorbol ester (12-O-tetradecanoylphorbol-13-acetate; TPA) and calcium ionophore (A23187)-mediated induction of PGE2 synthesis. This relatively low concentration of CAPE did not affect amounts of cyclooxygenase (COX) enzymes. CAPE nonselectively inhibited the activities of baculovirus-expressed hCOX-1 and hCOX-2 enzymes. TPA- and A23187-stimulated release of arachidonic acid from membrane phospholipids was also suppressed by CAPE (4-8 microg/ml). Higher concentrations of CAPE (10-20 microg/ml) suppressed the induction of COX-2 mRNA and protein mediated by TPA. Transient transfections using human COX-2 promoter deletion constructs were performed; the effects of TPA and CAPE were localized to a 124-bp region of the COX-2 promoter. In the rat carrageenan air pouch model of inflammation, CAPE (10-100 mg/kg) caused dose-dependent suppression of PG synthesis. Amounts of COX-2 in the pouch were markedly suppressed by 100 mg/kg CAPE but were unaffected by indomethacin. These data are important for understanding the anticancer and anti-inflammatory properties of CAPE.  (+info)

Genetic analysis of a chromosomal region containing vanA and vanB, genes required for conversion of either ferulate or vanillate to protocatechuate in Acinetobacter. (4/401)

VanA and VanB form an oxygenative demethylase that converts vanillate to protocatechuate in microorganisms. Ferulate, an abundant phytochemical, had been shown to be metabolized through a vanillate intermediate in several Pseudomonas isolates, and biochemical evidence had indicated that vanillate also is an intermediate in ferulate catabolism by Acinetobacter. Genetic evidence supporting this conclusion was obtained by characterization of mutant Acinetobacter strains blocked in catabolism of both ferulate and vanillate. Cloned Acinetobacter vanA and vanB were shown to be members of a chromosomal segment remote from a supraoperonic cluster containing other genes required for completion of the catabolism of ferulate and its structural analogs, caffeate and coumarate, through protocatechuate. The nucleotide sequence of DNA containing vanA and vanB demonstrated the presence of genes that, on the basis of nucleotide sequence similarity, appeared to be associated with transport of aromatic compounds, metabolism of such compounds, or iron scavenging. Spontaneous deletion of 100 kb of DNA containing this segment does not impede the growth of cells with simple carbon sources other than vanillate or ferulate. Additional spontaneous mutations blocking vanA and vanB expression were shown to be mediated by IS1236, including insertion of the newly discovered composite transposon Tn5613. On the whole, vanA and vanB appear to be located within a nonessential genetic region that exhibits considerable genetic malleability in Acinetobacter. The overall organization of genes neighboring Acinetobacter vanA and vanB, including a putative transcriptional regulatory gene that is convergently transcribed and overlaps vanB, is conserved in Pseudomonas aeruginosa but has undergone radical rearrangement in other Pseudomonas species.  (+info)

The rabbit lens epithelial cell line N/N1003A requires 12-lipoxygenase activity for DNA synthesis in response to EGF. (5/401)

PURPOSE: Cultured rat lenses and primary human lens epithelial cells (HLECs) express12-lipoxygenase (12-LOX) and require a 12-LOX metabolite of arachidonic acid for growth in response to EGF and insulin. This study seeks to identify an established cell line with these characteristics. METHODS: Immunoblotting was used to screen eight lens epithelial cell lines for 12-LOX expression: the human line, HLE-B3; mouse lines alphaTN4, 17EM15, 21EM15, and MLE6, and rabbit lines N/N1003A, LEP2 and B3. DNA synthesis was measured as incorporation of 3H-thymidine into DNA. Expression of c-fos mRNA was detected by RT-PCR. The involvement of 12-lipoxygenase metabolites was determined using the lipoxygenase inhibitors baicalein, cinnamyl 3,4-dihydroxy-alpha-cyanocinnamate (CDC), or nordihydroguiairetic acid (NDGA). RESULTS: 12-LOX was detected only in the rabbit lines N/N1003A, LEP2 and B3. N/N1003A cells were chosen for further study. 12-LOX inhibitors blocked DNA synthesis in response to EGF with or without insulin. Inhibition of EGF-stimulated DNA synthesis was reversed by 0.3 microM to 3 microM 12(S)hydroxyeicosatetraenoic acid (HETE), but not by equivalent concentrations of 5(S)HETE, 8(S)HETE, 15(S)HETE, or 12(R)HETE. Baicalein prevented EGF induction of c-fos mRNA. The transformed HLEC line, HLE-B3, showed little stimulation of DNA synthesis in response to EGF and was unaffected by the presence of 12-LOX inhibitors. CONCLUSIONS: N/N1003A cells, like primary cultured human lens epithelial cells or neonatal rat lenses, require 12-LOX activity for EGF dependent growth. This line will be useful for studies of the mechanism of action of 12(S)HETE.  (+info)

An early salicylic acid-, pathogen- and elicitor-inducible tobacco glucosyltransferase: role in compartmentalization of phenolics and H2O2 metabolism. (6/401)

Treatment of tobacco cell suspension cultures with a fungal elicitor of defense responses resulted in an early accumulation of the phenylpropanoid glucosyltransferase TOGT, along with the rapid synthesis and secretion of scopolin, the glucoside of scopoletin. Elicitor-triggered extracellular accumulation of the aglycone scopoletin and of free caffeic and ferulic acids could only be revealed in the presence of diphenylene iodonium, an inhibitor of extracellular H2O2 production. Our results strongly support a role for TOGT in the elicitor-stimulated production of transportable phenylpropanoid glucosides, followed by the release of free antioxidant phenolics into the extracellular medium and subsequent H2O2 scavenging.  (+info)

The small intestine can both absorb and glucuronidate luminal flavonoids. (7/401)

We have studied the perfusion of the jejunum and ileum in an isolated rat intestine model with flavonoids and hydroxycinnamates and the influence of glycosylation on the subsequent metabolism. Flavone and flavonol glucosides and their corresponding aglycones are glucuronidated during transfer across the rat jejunum and ileum and this glucuronidation occurs without the need for gut microflora. Furthermore, this suggests the presence of glycosidases as well as UDP-glucuronyl transferase in the jejunum. In contrast, quercetin-3-glucoside and rutin are mainly absorbed unmetabolised. The results suggest that the more highly reducing phenolics are absorbed predominantly as glucuronides (96.5%+/-4.6) of the amount absorbed, whereas monophenolic hydroxycinnamates and monophenolic B-ring flavonoids are less predisposed to glucuronidation and higher levels of aglycone (88.1%+/-10.1) are detected on absorption through both the jejunum and ileum.  (+info)

Induction of apoptosis by arachidonic acid in chronic myeloid leukemia cells. (8/401)

The hallmark of chronic myeloid leukemia (CML) is the presence of the bcr-abl oncogene, which is associated with transforming ability and an intrinsic resistance to induction of apoptosis by genotoxic agents. Arachidonic acid (AA), a biologically active fatty acid, plays a crucial role as a mediator of signaling pathways involved in cell proliferation and survival. In this study, we investigated the potential role of AA as a proapoptotic agent in CML. Pretreatment of human CML isolated progenitor cells with AA (100 microM for 18 h) induced 71-75% inhibition of in vitro colony formation of granulocyte-macrophage colony-forming units, multilineage colony-forming units, and erythroid burst-forming units. This inhibition was significantly greater than the effect on normal progenitor cells (19-39% growth inhibition of erythroid burst-forming units, multilineage colony-forming units, and granulocyte-macrophage colony-forming units). AA also inhibited growth of the bcr-abl-transformed cell line H7.bcr-abl A54. In contrast, a minimal effect of AA on inhibition of cell growth was observed in the parental nontransformed NSF/N1.H7 cell line. The antiproliferative effect of AA was associated with apoptosis. Gamma-linolenic acid, a precursor of AA, also inhibited cell growth, whereas other unsaturated and saturated fatty acids had no effect. Pharmacological inhibition of cyclooxygenase, lipooxygenase, and cytochrome P450 monooxygenase enzymes prior to exposure to AA did not rescue cells from the inhibitory effect of AA. Moreover, 5,8,11,14-eicosatetraynoic acid, a nonmetabolizable arachidonate analogue, also inhibited cell growth, suggesting that the effect of AA did not require further metabolism. Treatment with antioxidants prior to stimulation with AA was also ineffective in preventing its antiproliferative effect. Thus, AA inhibited proliferation of CML cells by inducing apoptotic cell death. The signaling mechanisms of AA-induced inhibition of cell growth appeared to be independent of its conversion into eicosanoids or free radical generation.  (+info)