(+/-)-(1S,2R,5S)-5-Amino-2-fluorocyclohex-3-enecarboxylic acid. A potent GABA aminotransferase inactivator that irreversibly inhibits via an elimination-aromatization pathway. (41/160)

Inhibition of gamma-aminobutyric acid aminotransferase (GABA-AT) increases the concentration of GABA, an inhibitory neurotransmitter in human brain, which could have therapeutic applications for a variety of neurological diseases, including epilepsy. On the basis of studies of several previously synthesized conformationally restricted GABA-AT inhibitors, (+/-)-(1S,2R,5S)-5-amino-2-fluorocyclohex-3-enecarboxylic acid (12) was designed as a mechanism-based inactivator. This compound was shown to irreversibly inhibit GABA-AT; substrate protects the enzyme from inactivation. Mechanistic experiments demonstrated the loss of one fluoride ion per active site during inactivation and the formation of N-m-carboxyphenylpyridoxamine 5'-phosphate (26), the same product generated by inactivation of GABA-AT by gabaculine (8). An elimination-aromatization mechanism is proposed to account for these results.  (+info)

A new citryl glycoside from Gastrodia elata and its inhibitory activity on GABA transaminase. (42/160)

A new citryl glycoside, trimethylcitryl-beta-D-galactopyranoside (1) along with a known phenolic compound, gastrodigenin (2) have been isolated from the active fraction of the rhizomes of Gastrodia elata (Orchidaceae). Their structures were elucidated on the basis of spectroscopic data and chemical reaction. 1 inhibited GABA transaminase activity by 56.8% at the final concentration of 10 microg/ml.  (+info)

Fluorinated conformationally restricted gamma-aminobutyric acid aminotransferase inhibitors. (43/160)

On the basis of the structures of several potent inhibitor molecules for gamma-aminobutryric acid aminotransferase (GABA-AT) that were previously reported, six modified fluorine-containing conformationally restricted analogues were designed, synthesized, and tested as GABA-AT inhibitors. The syntheses of all six molecules followed from a readily synthesized ketone intermediate. Three of the molecules were found to be irreversible inhibitors of GABA-AT with comparable or larger k(inact)/K(I) values than that of vigabatrin, a clinically used antiepilepsy drug, and the other three were reversible inhibitors. A possible mechanism for inactivation by one of the inactivators is proposed.  (+info)

Vigabatrin, a GABA transaminase inhibitor, reversibly eliminates tinnitus in an animal model. (44/160)

Animal models have facilitated basic neuroscience research investigating the pathophysiology of tinnitus. It has been hypothesized that partial deafferentation produces a loss of tonic inhibition in the auditory system that may lead to inappropriate neuroplastic changes eventually expressed as tinnitus. The pathological down-regulation of gamma-amino butyric acid (GABA) provides a potential mechanism for this loss of inhibition. Using an animal model previously demonstrated to be sensitive to treatments that either induce or attenuate tinnitus, the present study examined the effect of the specific GABA agonist vigabatrin on chronic tinnitus. It was hypothesized that vigabatrin would decrease the evidence of tinnitus by restoring central inhibitory function through increased GABA availability. Vigabatrin has been demonstrated to elevate central GABA levels (Mattson et al. 1995). Tinnitus was induced in rats using a single 1-h unilateral exposure to band-limited noise, which preserved normal hearing in one ear. Psychophysical evidence of tinnitus was obtained using a free-operant conditioned-suppression method: Rats lever-pressed for food pellets and were trained to discriminate between the presence and absence of sound by punishing lever pressing with a mild foot shock (0.5 mA; 1 s) at the conclusion of randomly introduced silent periods (60 s) inserted into background low-level noise. Additional random insertion of pure tone and noise periods of variable intensity enabled the derivation of psychophysical functions that reflected the presence of tinnitus with features similar to 20-kHz tones. Vigabatrin was chronically administered via drinking water at 30 and 81 mg kg-1 day-1, with each dose level tested over 2 weeks, followed by a 0-mg washout test. Vigabatrin completely and reversibly eliminated the psychophysical evidence of tinnitus at both doses. Although vigabatrin has serious negative side effects that have prevented its clinical use in the USA, it is nevertheless a potentially useful tool in unraveling tinnitus pathophysiology.  (+info)

Structural modifications of (1S,3S)-3-amino-4-difluoromethylenecyclopentanecarboxylic acid, a potent irreversible inhibitor of GABA aminotransferase. (45/160)

Low brain levels of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) lead to convulsions. Inhibition of GABA aminotransferase increases the concentration of GABA and can terminate the convulsions. Earlier we reported the synthesis of (1S,3S)-3-amino-4-difluoromethylenecyclopentanecarboxylic acid (2), which is 186 times more potent an inactivator of GABA aminotransferase than the epilepsy drug S-vigabatrin. The corresponding dichloromethylene analogue of 2 (compound 3) has been made, but it shows only weak reversible inhibition of GABA aminotransferase. However, the tetrazole isostere of 2 (compound 4) has been found to be a time-dependent inactivator of GABA aminotransferase. Although it is 20 times less potent than carboxylic acid 2, it is 2.5 times more potent than S-vigabatrin. A calculation of the ClogP values indicates that 4 is the most lipophilic of the three, being 69 times more lipophilic than 2 and 55 times more lipophilic than S-vigabatrin, indicating potential for improved bioavailability.  (+info)

Low-level manganese exposure alters glutamate metabolism in GABAergic AF5 cells. (46/160)

Recent studies have suggested that the globus pallidus may be a particularly sensitive target of manganese (Mn), however, in vitro studies of the effects of Mn on GABAergic neurons have been restricted by the lack of a cell model expressing GABAergic properties. Here, we investigated the effects of low-level Mn treatment on cellular GABA and glutamate metabolism using the newly characterized AF5 rat neural-derived cell line, which displays GABAergic properties during culture in vitro. Intracellular GABA and glutamate levels were measured along with measurement of the release of GABA and glutamate into the culture medium, glutamine uptake from the culture medium, and the specific effects of Mn on the enzymes directly responsible for the synthesis and degradation of GABA, glutamate decarboxylase (GAD) and GABA transaminase (GABA-T). Our results demonstrate that Mn had no effect on the activities of GAD or GABA-T. Similarly, low-level Mn treatment of AF5 cultures had only a small effect on intracellular GABA levels (114% of control) and no effect on the release of GABA. In contrast, intracellular and extracellular glutamate levels were enhanced to 170 and 198% of control during Mn treatment, respectively, while extracellular glutamine decreased to 73% of controls. Together, these results suggest that glutamate homeostasis may be preferentially affected over GABA in AF5 cells during low-level Mn treatment, suggesting a novel mechanism by which Mn-induced excitotoxicity might arise.  (+info)

Gene transcription in the leaves of rice undergoing salt-induced morphological changes (Oryza sativa L.). (47/160)

We describe the gene expression profile of third leaves of rice (cv. Nipponbare) seedlings subjected to salt stress (130 mM NaCl). Transcripts of Mn-SOD, Cu/Zn-SOD,cytosolic and stromal APX, GR and CatB were regulated, whereas expression of thylakoid-bound APX and CatA were down-regulated. The levels of the compatible solute proline and of transcripts of its biosynthetic gene, Delta1-pyrroline-5-carboxylate synthetase (P5CS), were strongly increased by salt stress. Interestingly, a potential compatible solute, gamma-aminobutyric acid (GABA), was also found to be strongly induced by salt stress along with marked up-regulation of transcripts of GABA-transaminase. A dye-swap rice DNA microarray analysis identified a large number of genes whose expression in third leaves was altered by salt stress. Among 149 genes whose expression was altered at all the times assayed (3, 4 and 6 days) during salt stress, there were 47 annotated novel genes and 76 unknown genes. These results provide new insight into the effect of salt stress on the expression of genes related to antioxidant enzymes, proline and GABA as well as of genes in several functional categories.  (+info)

Enantiomers of 4-amino-3-fluorobutanoic acid as substrates for gamma-aminobutyric acid aminotransferase. Conformational probes for GABA binding. (48/160)

Gamma-aminobutyric acid aminotransferase (GABA-AT), a pyridoxal 5'-phosphate dependent enzyme, catalyzes the degradation of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) to succinic semialdehyde with concomitant conversion of pyridoxal 5'-phosphate (PLP) to pyridoxamine 5'-phosphate (PMP). The enzyme then catalyzes the conversion of alpha-ketoglutarate to the excitatory neurotransmitter L-glutamate. Racemic 4-amino-3-fluorobutanoic acid (3-F-GABA) was shown previously to act as a substrate for GABA-AT, not for transamination, but for HF elimination. Here we report studies of the reaction catalyzed by GABA-AT on (R)- and (S)-3-F-GABA. Neither enantiomer is a substrate for transamination. Very little elimination from the (S)-enantiomer was detected using a coupled enzyme assay; The rate of elimination of HF from the (R)-enantiomer is at least 10 times greater than that for the (S)-enantiomer. The (R)-enantiomer is about 20 times more efficient as a substrate for GABA-AT catalyzed HF elimination than GABA is a substrate for transamination. The (R)-enantiomer also inhibits the transamination of GABA 10 times more effectively than the (S)-enantiomer. Using a combination of computer modeling and the knowledge that vicinal C-F and C-NH3+ bonds have a strong preference to align gauche rather than anti to each other, it is concluded that on binding of free 3-F-GABA to GABA-AT the optimal conformation places the C-NH3+ and C-F bonds gauche in the (R)-enantiomer but anti in the (S)-enantiomer. Furthermore, the dynamic binding process and the bioactive conformation of GABA bound to GABA-AT have been inferred on the basis of the different biological behavior of the two enantiomers of 3-F-GABA when they bind to the enzyme. The present study suggests that the C-F bond can be utilized as a conformational probe to explore the dynamic binding process and provide insight into the bioactive conformation of substrates, which cannot be easily determined by other biophysical approaches.  (+info)