Glucocorticoid receptor immunoreactivity in neurons and pituitary cells implicated in reproductive functions in rainbow trout: a double immunohistochemical study. (1/135)

In order to identify the nature of the glucocorticoid receptor (GR)-expressing neurons and pituitary cells that potentially mediate the negative effects of stress on reproductive performance, double immunohistochemical stainings were performed in the brain and pituitary of the rainbow trout (Oncorhynchus mykiss). To avoid possible cross-reactions during the double staining studies, combinations of primary antibodies raised in different species were used, and we report here the generation of an antibody raised in guinea pig against the rainbow trout glucocorticoid receptor (rtGR). The results obtained in vitellogenic females showed that GnRH-positive neurons in the caudal telencephalon/anterior preoptic region consistently exhibited rtGR immunoreactivity. Similarly, in the anterior ventral preoptic region, a group of tyrosine hydroxylase-positive neurons, known for inhibiting gonadotropin (GTH)-2 secretion during vitellogenesis, was consistently shown to strongly express GR. Finally, we show that a large majority of the GTH-1 (FSH-like) and GTH-2 (LH-like) cells of the pituitary exhibit rtGR immunoreactivity. These results indicate that cortisol may affect the neuroendocrine control of the reproductive process of the rainbow trout at multiple sites.  (+info)

Control of oocyte maturation in sexually mature Drosophila females. (2/135)

In many sexually mature insects egg production and oviposition are tightly coupled to copulation. Sex-Peptide is a 36-amino-acid peptide synthesized in the accessory glands of Drosophila melanogaster males and transferred to the female during copulation. Sex-Peptide stimulates vitellogenic oocyte progression through a putative control point at about stage 9 of oogenesis. Here we show that application of the juvenile hormone analogue methoprene mimics the Sex-Peptide-mediated stimulation of vitellogenic oocyte progression in sexually mature virgin females. Apoptosis is induced by 20-hydroxyecdysone in nurse cells of stage 9 egg chambers at physiological concentrations (10(-7) M). 20-Hydroxyecdysone thus acts as an antagonist of early vitellogenic oocyte development. Simultaneous application of juvenile hormone analogue, however, protects early vitellogenic oocytes from 20-hydroxyecdysone-induced resorption. These results suggest that the balance of these hormones in the hemolymph regulates whether oocytes will progress through the control point at stage 9 or undergo apoptosis. These data are further supported by a molecular analysis of the regulation of yolk protein synthesis and uptake into the ovary by the two hormones. We conclude that juvenile hormone is a downstream component in the Sex-Peptide response cascade and acts by stimulating vitellogenic oocyte progression and inhibiting apoptosis. Since juvenile hormone analogue does not elicit increased oviposition and reduced receptivity, Sex-Peptide must have an additional, separate effect on these two postmating responses.  (+info)

AHR38, a homolog of NGFI-B, inhibits formation of the functional ecdysteroid receptor in the mosquito Aedes aegypti. (3/135)

In anautogenous mosquitoes, vitellogenesis, the key event in egg maturation, requires a blood meal. Consequently, mosquitoes are vectors of numerous devastating human diseases. After ingestion of blood, 20-hydroxyecdysone activates yolk protein precursor (YPP) genes in the metabolic tissue, the fat body. An important adaptation for anautogenicity is the previtellogenic developmental arrest (the state-of-arrest) preventing the activation of YPP genes in previtellogenic females prior to blood feeding. Here, we show that a retinoid X receptor homolog, Ultraspiracle (AaUSP), which is an obligatory partner in the functional ecdysteroid receptor, exists at the state-of-arrest as a heterodimer with the orphan nuclear receptor AHR38, a homolog of Drosophila DHR38 and nerve growth factor-induced protein B. Yeast two-hybrid and glutathione S-transferase pull-down assays demonstrate that AHR38 can interact strongly with AaUSP. AHR38 also disrupts binding of ecdysteroid receptor to ecdysone response elements. Cell co-transfection of AHR38 with AaEcR and AaUSP inhibits ecdysone-dependent activation of a reporter gene by the ecdysteroid receptor. Co-immunoprecipitation experiments indicate that AaUSP protein associates with AHR38 instead of AaEcR in fat body nuclei at the state-of-arrest.  (+info)

Differential expression and regulation by 20-hydroxyecdysone of mosquito ultraspiracle isoforms. (4/135)

Ultraspiracle (USP), the insect homologue of the vertebrate retinoid X receptor, is an obligatory dimerization partner for the ecdysteroid receptor (EcR). Two USP isoforms, USP-A and USP-B, with distinct N-termini, occur in the mosquito Aedes aegypti. In the fat body and ovary, USP-A mRNA is highly expressed during the pre- and late vitellogenic stages, corresponding to a period of low ecdysteroid titer, while USP-B mRNA exhibits its highest levels during the vitellogenic period, correlating with a high ecdysteroid titer. Remarkably, 20-hydroxyecdysone (20E) has opposite effects on USP isoform transcripts in in vitro fat body culture. This steroid hormone upregulates USP-B transcription and its presence is required to sustain a high level of USP-B expression. In contrast, 20E inhibits activation of USP-A transcription. Although EcR.USP-A recognizes the same ecdysteroid-responsive elements, EcR.USP-B binds them with an affinity twofold higher than that of EcR.USP-A. Likewise, EcR.USP-B transactivates a reporter gene in CV-1 cells twofold more strongly than EcR.USP-A. These results suggest that USP-B functions as a major heterodimerization partner for EcR during the vitellogenic response to 20E in the mosquito.  (+info)

Regulation of the vitellogenin receptor during Drosophila melanogaster oogenesis. (5/135)

In many insects, development of the oocyte arrests temporarily just before vitellogenesis, the period when vitellogenins (yolk proteins) accumulate in the oocyte. Following hormonal and environmental cues, development of the oocyte resumes, and endocytosis of vitellogenins begins. An essential component of yolk uptake is the vitellogenin receptor. In this report, we describe the ovarian expression pattern and subcellular localization of the mRNA and protein encoded by the Drosophila melanogaster vitellogenin receptor gene yolkless (yl). yl RNA and protein are both expressed very early during the development of the oocyte, long before vitellogenesis begins. RNA in situ hybridization and lacZ reporter analyses show that yl RNA is synthesized by the germ line nurse cells and then transported to the oocyte. Yl protein is evenly distributed throughout the oocyte during the previtellogenic stages of oogenesis, demonstrating that the failure to take up yolk in these early stage oocyte is not due to the absence of the receptor. The transition to the vitellogenic stages is marked by the accumulation of yolk via clathrin-coated vesicles. After this transition, yolk protein receptor levels increase markedly at the cortex of the egg. Consistent with its role in yolk uptake, immunogold labeling of the receptor reveals Yl in endocytic structures at the cortex of wild-type vitellogenic oocytes. In addition, shortly after the inception of yolk uptake, we find multivesicular bodies where the yolk and receptor are distinctly partitioned. By the end of vitellogenesis, the receptor localizes predominantly to the cortex of the oocyte. However, during oogenesis in yl mutants that express full-length protein yet fail to incorporate yolk proteins, the receptor remains evenly distributed throughout the oocyte.  (+info)

The Drosophila ecdysone receptor (EcR) gene is required maternally for normal oogenesis. (6/135)

Oogenesis in Drosophila is regulated by the steroid hormone ecdysone and the sesquiterpenoid juvenile hormone. Response to ecdysone is mediated by a heteromeric receptor composed of the EcR and USP proteins. We have identified a temperature-sensitive EcR mutation, EcR(A483T), from a previously isolated collection of EcR mutations. EcR(A483T) is predicted to affect all EcR protein products (EcR-A, EcR-B1, and EcR-B2) since it maps to a common exon encoding the ligand-binding domain. In wild-type females, we find that both EcR-A and EcR-B1 are expressed in nurse cells and follicle cells throughout oogenesis. EcR mutant females raised at permissive temperature and then shifted to restrictive temperature exhibit severe reductions in fecundity. Oogenesis in EcR mutant females is defective, and the spectrum of oogenic defects includes the presence of abnormal egg chambers and loss of vitellogenic egg stages. Our results demonstrate a requirement for EcR during female reproduction and suggest that EcR is required for normal oogenesis.  (+info)

Transcriptional interference between glucocorticoid receptor and estradiol receptor mediates the inhibitory effect of cortisol on fish vitellogenesis. (7/135)

In oviparous species, the synthesis of vitellogenin (Vg) takes place in the liver according to a strictly estrogen-dependent mechanism that first involves an up-regulation of the estrogen receptor (ER) by its own ligand. However, reports from the literature indicate that in trout stress or cortisol may cause a reduction of cytosolic E2-binding sites in the liver and a decrease in plasma Vg levels. To investigate the mechanisms underlying these effects, in vivo and in vitro experiments were designed in rainbow trout (Oncorhynchus mykiss). The results demonstrate that cortisol implanted into maturing females caused a marked decrease of rainbow trout ER (rtER) and rainbow trout Vg (rtVg) mRNA levels in the liver. In vitro experiments on hepatocyte aggregates also showed that dexamethasone (Dex) caused a strong decrease in the basal and E2-stimulated rtER mRNA and to a lesser extent rtVg mRNA. These effects were specific as no other hormones were able to mimic the inhibitory action of Dex. A study of rtER mRNA stability indicated that the effects of glucocorticoids are likely to take place at the transcriptional level. This was further indicated by transfection experiments in CHO-K(1) cells, which showed that rainbow trout glucocorticoid receptor (rtGR) strongly inhibited the E2-stimulated transcriptional activity of the rtER promoter. Taken together, these results indicate that the rtGR exerts a transcriptional interference on the expression of the rtER that may explain some of the negative effects of stress or cortisol on vitellogenesis.  (+info)

Conserved molecular mechanism for the stage specificity of the mosquito vitellogenic response to ecdysone. (8/135)

In the mosquito Aedes aegypti, the adult female becomes competent for a vitellogenic response to ecdysone after previtellogenic development. Here, we show that betaFTZ-F1, the nuclear receptor implicated as a competence factor for stage-specific responses to ecdysone during Drosophila metamorphosis, serves a similar function during mosquito vitellogenesis. AaFTZ-F1 is expressed highly in the mosquito fat body during pre- and postvitellogenic periods when ecdysteroid titers are low. The mosquito AaFTZ-F1 transcript nearly disappears in mid-vitellogenesis when ecdysteroid titers are high. An expression peak of HR3, a nuclear receptor implicated in the activation of betaFTZ-F1 in Drosophila, precedes each rise in mosquito FTZ-F1 expression. In in vitro fat body culture, AaFTZ-F1 expression is inhibited by 20-hydroxyecdysone (20E) and superactivated by its withdrawal. Following in vitro AaFTZ-F1 superactivation, a secondary 20E challenge results in superinduction of the early AaE75 gene and the late target VCP gene. Electrophoretic mobility-shift assays show that the onset of ecdysone-response competence in the mosquito fat body is correlated with the appearance of the functional AaFTZ-F1 protein at the end of the previtellogenic development. These findings suggest that a conserved molecular mechanism for controlling stage specificity is reiteratively used during metamorphic and reproductive responses to ecdysone.  (+info)