Localization of pestiviral envelope proteins E(rns) and E2 at the cell surface and on isolated particles. (1/236)

The glycoproteins E(rns) of classical swine fever virus (CSFV) and E(rns) and E2 of bovine viral diarrhoea virus (BVDV) are shown to be located at the surface of infected cells by the use of indirect immunofluorescence and by cytofluorometric analysis. The positive immunostaining of the cell surface was further analysed by immunogold electron microscopy and it could be shown that only extracellular virions were labelled. Gold granules were not seen at the cellular plasma membrane. In contrast to BVDV E2, the CSFV E2 of virions sticking to the plasma membrane was not accessible to the respective monoclonal antibodies. However, CSFV particles isolated from culture supernatant were able to bind both monoclonal anti-E(rns) and anti-E2 antibodies. For CSFV and BVDV, binding of anti-E(rns) antibodies to the virions was more pronounced than that of anti-E2. This finding was unexpected since E2 is considered to be the immunodominant glycoprotein.  (+info)

Cytopathogenic and noncytopathogenic RNA replicons of classical swine fever virus. (2/236)

To determine the minimal requirements for autonomous RNA replication of classical swine fever virus (CSFV), genomes having in-frame deletions within the genes for structural and flanking nonstructural proteins were constructed, based on an infectious cDNA clone of CSFV Alfort/187. RNA was transcribed in vitro from the respective plasmids and transfected into SK-6 swine kidney cells. The replication competence of the RNA was determined by immunostaining transfected cells for CSFV NS3 protein and by analysis of cell extracts for viral RNA, as well as protein synthesis at different times after transfection. The genes encoding N(pro), C, E(rns), E1, E2, p7, and NS2 proved to be dispensable for RNA replication, but the efficiency of replication varied strongly between individual constructs. RNA replicons containing the complete NS2-NS3 gene persisted in transfected cells and continued to replicate without causing any obvious morphological or functional damage to the cells, whereas genomes lacking the NS2 gene replicated more efficiently and induced a cytopathic effect. These findings suggest that NS2, although it is not essential for pestivirus RNA replication, has a regulatory function therein. Both cytopathogenic and noncytopathogenic replicons were packaged into virus particles provided in trans by a cotransfected full-length helper virus genome.  (+info)

Classical swine fever in Sardinia: epidemiology of recent outbreaks. (3/236)

A variable region of the gene encoding the major glycoprotein (E2) of Classical Swine Fever Virus (CSFV) was sequenced from 12 Sardinian isolates which had been obtained from three geographically distinct regions of the Island. Phylogenetic analysis of these viruses and others characterized in previous studies [1, 2] indicated that (a) the Sardinian viruses were all members of the common European subgroup 2.3 and were clearly distinct from live vaccines recently used in this area; (b) they could be resolved into four distinct groups in accordance with the region or date of isolation; (c) in at least two regions wild boar/domestic swine contact was implicated in virus spread; (d) the oldest isolate (1983) and some of the recent isolates were possibly introduced from mainland Italy. In addition, this study has wider implications for the interpretation of CSFV variation. We have been able to demonstrate that small variations within this region of the virus genome (possibly less than 2.7% or five nucleotide substitutions) can be used to separate isolates into groups that precisely fit their geographical distribution. This finding is especially important for deducing the epidemiological relationships between multiple outbreaks caused by similar viruses that occur in close proximity.  (+info)

Mutations abrogating the RNase activity in glycoprotein E(rns) of the pestivirus classical swine fever virus lead to virus attenuation. (4/236)

Classical swine fever (CSF) is a severe hemorrhagic disease of swine caused by the pestivirus CSF virus (CSFV). Amino acid exchanges or deletions introduced by site-directed mutagenesis into the putative active site of the RNase residing in the glycoprotein E(rns) of CSFV abolished the enzymatic activity of this protein, as demonstrated with an RNase test suitable for detection of the enzymatic activity in crude cell extracts. Incorporation of the altered sequences into an infectious CSFV clone resulted in recovery of viable viruses upon RNA transfection, except for a variant displaying a deletion of the histidine codon at position 297 of the long open reading frame. These RNase-negative virus mutants displayed growth characteristics in tissue culture that were undistinguishable from wild-type virus and were stable for at least seven passages. In contrast to animals inoculated with an RNase-positive control virus, infection of piglets with an RNase-negative mutant containing a deletion of the histidine codon 346 of the open reading frame did not lead to CSF. Neither fever nor extended viremia could be detected. Animals infected with this mutant did not show decrease of peripheral B cells, a characteristic feature of CSF in swine. Animal experiments with four other mutants with either exchanges of codons 297 or 346 or double exchanges of both codons 297 and 346 showed that all these RNase-negative mutants were attenuated. All viruses with mutations affecting codon 346 were completely apathogenic, whereas those containing only changes of codon 297 consistently induced clinical symptoms for several days, followed by sudden recovery. Analyses of reisolated viruses gave no indication for the presence of revertants in the infected animals.  (+info)

The RNA-dependent RNA polymerases of different members of the family Flaviviridae exhibit similar properties in vitro. (5/236)

The virus-encoded RNA-dependent RNA polymerase (RdRp), which is required for replication of the positive-strand RNA genome, is a key enzyme of members of the virus family Flaviviridae. By using heterologously expressed proteins, we demonstrate that the 77 kDa NS5B protein of two pestiviruses, bovine viral diarrhoea virus and classical swine fever virus, and the 100 kDa NS5 protein of the West Nile flavivirus possess RdRp activity in vitro. As originally shown for the RdRp of hepatitis C virus, RNA synthesis catalysed by the pestivirus and flavivirus enzymes is strictly primer-dependent in vitro. Accordingly, initiation of RNA polymerization on homopolymeric RNAs and heteropolymeric templates, the latter with a blocked 3'-hydroxyl group, was found to be dependent on the presence of complementary oligonucleotide primer molecules. On unblocked heteropolymeric templates, including authentic viral RNAs, the RdRps were shown to initiate RNA synthesis via intramolecular priming at the 3'-hydroxyl group of the template and 'copy-back' transcription, thus yielding RNase-resistant hairpin molecules. Taken together, the RdRps of different members of the Flaviviridae were demonstrated to exhibit a common reactivity profile in vitro, typical of nucleic acid-polymerizing enzymes.  (+info)

Classical swine fever virus E(rns) deletion mutants: trans-complementation and potential use as nontransmissible, modified, live-attenuated marker vaccines. (6/236)

An SK6 cell line (SK6c26) which constitutively expressed the glycoprotein E(rns) of classical swine fever virus (CSFV) was used to rescue CSFV E(rns) deletion mutants based on the infectious copy of CSFV strain C. The biochemical properties of E(rns) from this cell line were indistinguishable from those of CSFV E(rns). Two E(rns) deletion mutants were constructed, virus Flc23 and virus Flc22. Virus Flc23 encoded only the utmost N- and C-terminal amino acids of E(rns) (deletion of 215 amino acids) to retain the original protease cleavage sites. Virus Flc22 is not recognized by a panel of E(rns) antibodies, due to a deletion of 66 amino acids in E(rns). The E(rns) deletion mutants Flc22 and Flc23 could be rescued in vitro only on the complementing SK6c26 cells. These rescued viruses could infect and replicate in SK6 cells but did not yield infectious virus. Virus neutralization by E(rns)-specific antibodies was similar for the wild-type virus and the recombinant viruses, indicating that E(rns) from SK6c26 cells was incorporated in the viral particles. Pigs vaccinated with Flc22 or Flc23 were protected against a challenge with a lethal dose of CSFV strain Brescia. This is the first demonstration of trans-complementation of defective pestivirus RNA with a pestiviral structural protein and opens new ways to develop nontransmissible modified live pestivirus vaccines. In addition, the absence of (the antigenic part of) E(rns) in the recombinant viral particles can be used to differentiate between infected and vaccinated animals.  (+info)

Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. (7/236)

Granulocytopenia, a hematological hallmark of classical swine fever, is partially responsible for the suppression of innate immune defenses during classical swine fever. The present report demonstrates that this depletion was apparent as early as 3 days postinfection (p.i.). Both mature peripheral and bone marrow neutrophils were affected, whereas immature neutrophils increased absolutely in the periphery and coincidentally immature myeloid progenitors in the bone marrow. These data suggest that a pathogenic relationship exists between these compartments. The central event was not the arrest of hematopoietic cell proliferation or of the mobilization process, but instead apoptosis and possibly also necrosis were shown to play a role. This increase in apoptotic and dead cells was detected as early as 1-3 days p.i. In contrast, viral RNA in bone marrow hematopoietic cells (BMHC) was first detected 5 days p.i., and significant amounts of infected BMHC were detected only 7 days p.i., with the major target being the myeloid compartment. The increased caspase-3 activity observed supported a role for apoptotic cell death. Furthermore, the elevated caspase-9 activity indicated the involvement of the mitochondrial apoptotic pathway. Taken together, the results demonstrate that granulocytopenia and bone marrow atrophy are mediated by hematopoietic cell death and that indirect virus-host-mediated mechanisms are likely to be responsible.  (+info)

Ultrastructural glomerular changes in experimental infection with the classical swine fever virus. (8/236)

Ultrastructural studies of glomerular changes were performed on 16 pigs experimentally infected with a highly virulent strain of the classical swine fever virus. Our observations revealed the thickening of glomerular basement membranes, swelling of endothelial cells and cytoplasmic vacuolization within podocytes containing abundant viral particles. An early viral infection of podocytes was suggested as the cause of selective swelling of the foot processes of these cells with the consequent obliteration of the glomerular urinary spaces. To our knowledge this is the first report of ultrastructural evidence of classical swine fever virions infecting glomerular podocytes.  (+info)