Endothelial targeting and enhanced antiinflammatory effects of complement inhibitors possessing sialyl Lewisx moieties. (1/439)

The complement inhibitor soluble complement receptor type 1 (sCR1) and a truncated form of sCR1, sCR1[desLHR-A], have been generated with expression of the selectin-reactive oligosaccharide moiety, sialyl Lewisx (sLex), as N-linked oligosaccharide adducts. These modified proteins, sCR1sLex and sCR1[desLHR-A]sLex, were assessed in the L-selectin- and P-selectin-dependent rat model of lung injury following systemic activation of complement by cobra venom factor and in the L-selectin-, P-selectin-, and E-selectin-dependent model of lung injury following intrapulmonary deposition of IgG immune complexes. In the cobra venom factor model, sCR1sLex and sCR1[desLHR-A]sLex caused substantially greater reductions in neutrophil accumulation and in albumin extravasation in lung when compared with the non-sLex-decorated forms. In this model, increased lung vascular binding of sCR1sLex and sCR1[desLHR-A]sLex occurred in a P-selectin-dependent manner, in contrast to the absence of any increased binding of sCR1 or sCR1[desLHR-A]. In the IgG immune complex model, sCR1[desLHR-A]sLex possessed greater protective effects relative to sCR1[desLHR-A], based on albumin extravasation and neutrophil accumulation. Enhanced protective effects correlated with greater lung vascular binding of sCR1[desLHR-A]sLex as compared with the non-sLex-decorated form. In TNF-alpha-activated HUVEC, substantial in vitro binding occurred with sCR1[desLHR-A]sLex (but not with sCR1[desLHR-A]). This endothelial cell binding was blocked by anti-E-selectin but not by anti-P-selectin. These data suggest that sLex-decorated complement inhibitors have enhanced antiinflammatory effects and appear to have enhanced ability to localize to the activated vascular endothelium.  (+info)

Inhibition of a membrane complement regulatory protein by a monoclonal antibody induces acute lethal shock in rats primed with lipopolysaccharide. (2/439)

Rats pretreated with traces of LPS developed acute fatal shock syndrome after i.v. administration of a mAb that inhibits the function of a membrane complement regulatory molecule. Such a shock was not observed after the administration of large amounts of LPS instead of the mAb following LPS pretreatment. The lethal response did not occur in rats depleted of either leukocytes or complement, and a C5a receptor antagonist was found to inhibit the reaction. Furthermore, LPS-treated rats did not suffer fatal shock following the injection of cobra venom factor, which activates complement in the fluid phase so extensively as to exhaust complement capacity. Therefore, complement activation on cell membranes is a requirement for this type of acute reaction.  (+info)

Mechanisms of enhanced lung injury during sepsis. (3/439)

A major complication in sepsis is progressively impaired lung function and susceptibility to intrapulmonary infection. Why sepsis predisposes the lung to injury is not clear. In the current studies, rats were rendered septic by cecal ligation/puncture and evaluated for increased susceptibility to injury after a direct pulmonary insult (deposition of IgG immune complexes or airway instillation of lipopolysaccharide). By itself, cecal ligation/puncture did not produce evidence of lung injury. However, after a direct pulmonary insult, lung injury in septic animals was significantly enhanced. Enhanced lung injury was associated with increased accumulation of neutrophils in lung, enhanced production of CXC chemokines (but not tumor necrosis factor-alpha) in bronchoalveolar lavage fluids, and increased expression of lung vascular intercellular adhesion molecule-1 (ICAM-1). Complement depletion or treatment with anti-C5a abolished all evidence of enhanced lung injury in septic animals. When stimulated in vitro, bronchoalveolar lavage macrophages from septic animals had greatly enhanced CXC chemokine responses as compared with macrophages from sham-operated animals or from septic animals that had been complement depleted. These data indicate that the septic state causes priming of lung macrophages and suggest that enhanced lung injury in the septic state is complement dependent and related to increased production of CXC chemokines.  (+info)

Role of group II secretory phospholipase A2 in atherosclerosis: 2. Potential involvement of biologically active oxidized phospholipids. (4/439)

Secretory nonpancreatic phospholipase A2 (group II sPLA2) is induced in inflammation and present in atherosclerotic lesions. In an accompanying publication we demonstrate that transgenic mice expressing group II sPLA2 developed severe atherosclerosis. The current study was undertaken to determine whether 1 mechanism by which group II sPLA2 might contribute to the progression of inflammation and atherosclerosis is by increasing the formation of biologically active oxidized phospholipids. In vivo measurements of bioactive lipids were performed, and in vitro studies tested the hypothesis that sPLA2 can increase the accumulation of bioactive phospholipids. We have shown previously that 3 oxidized phospholipids derived from the oxidation of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (PAPC) stimulated endothelial cells to bind monocytes, a process that is known to be an important step in atherogenesis. We now show that these 3 biologically active phospholipids are significantly increased in livers of sPLA2 transgenic mice fed a high-fat diet as compared with nontransgenic littermates. We present in vitro evidence for several mechanisms by which these phospholipids may be increased in sPLA2 transgenics. These studies demonstrated that polyunsaturated free fatty acids, which are liberated by sPLA2, increased the formation of bioactive phospholipids in LDL, resulting in increased ability to stimulate monocyte-endothelial interactions. Moreover, sPLA2-treated LDL was oxidized by cocultures of human aortic endothelial cells and smooth muscle cells more efficiently than untreated LDL. Analysis by electrospray ionization-mass spectrometry revealed that the bioactive phospholipids, compared with unoxidized PAPC, were less susceptible to hydrolysis by human recombinant group II sPLA2. In addition, HDL from the transgenic mice and human HDL treated with recombinant sPLA2 in vitro failed, in the coculture system, to protect against the formation of biologically active phospholipids in LDL. This lack of protection may in part relate to the decreased levels of paraoxonase seen in the HDL isolated from the transgenic animals. Taken together, these studies show that levels of biologically active oxidized phospholipids are increased in sPLA2 transgenic mice; they also suggest that this increase may be mediated by effects of sPLA2 on both LDL and HDL.  (+info)

A nonhuman primate model for the selective elimination of CD8+ lymphocytes using a mouse-human chimeric monoclonal antibody. (5/439)

Nonhuman primates provide valuable animal models for human diseases. However, studies assessing the role of cell-mediated immune responses have been difficult to perform in nonhuman primates. We have shown that CD8+ lymphocyte-mediated immunity in rhesus monkeys can be selectively eliminated using the mouse-human chimeric anti-CD8 monoclonal antibody cM-T807. In vitro, this antibody completely blocked antigen-specific expansion of cytotoxic T cells and decreased major histocompatibility complex class I-restricted, antigen-specific lysis of target cells but did not mediate complement-dependent cell lysis. In vivo administration of cM-T807 in rhesus monkeys resulted in near total depletion of CD8+ T cells from the blood and lymph nodes for up to 6 weeks. This depletion was not solely complement-dependent and persisted longer in adults than in juveniles. Preservation of B cell and CD4+ T cell function in monkeys depleted of CD8+ lymphocytes was demonstrated by their ability to develop humoral immune responses to the administered chimeric monoclonal antibody. Furthermore, during CD8+ lymphocyte depletion, monkeys developed delayed-type hypersensitivity reactions comprised only of CD4+ T cells but not CD8+ T cells. This CD8+ lymphocyte depletion model should prove useful in defining the role of cell-mediated immune responses in controlling infectious diseases in nonhuman primates.  (+info)

Binding of nucleotide triphosphates to cardiotoxin analogue II from the Taiwan cobra venom (Naja naja atra). Elucidation of the structural interactions in the dATP-cardiotoxin analogue ii complex. (6/439)

Snake venom cardiotoxins have been recently shown to block the enzymatic activity of phospholipid protein kinase and Na+,K+-ATPase. To understand the molecular basis for the inhibitory effects of cardiotoxin on the action of these enzymes, the nucleotide triphosphate binding ability of cardiotoxin analogue II (CTX II) from the Taiwan cobra (Naja naja atra) venom is investigated using a variety of spectroscopic techniques such as fluorescence, circular dichroism, and two-dimensional NMR. CTX II is found to bind to all the four nucleotide triphosphates (ATP, UTP, GTP, and CTP) with similar affinity. Detailed studies of the binding of dATP to CTX II indicated that the toxin molecule is significantly stabilized in the presence of the nucleotide. Molecular modeling, based on the NOEs observed for the dATP.CTX II complex, reveals that dATP binds to the CTX II molecule at the groove enclosed between the N- and C-terminal ends of the toxin molecule. Based on the results obtained in the present study, a molecular mechanism to account for the inhibition of the enzymatic activity of the phospholipid-sensitive protein kinase and Na+,K+-ATPase is also proposed.  (+info)

Effect of ranitidine bismuth citrate on the phospholipase A2 activity of Naja naja venom and Helicobacter pylori: a biochemical analysis. (7/439)

BACKGROUND: Helicobacter pylori has become recognized as a fundamental pathogen in the development of gastritis and peptic ulcer disease. Bismuth compounds in combination with antibiotics are widely used to treat H. pylori associated peptic ulcer disease. METHODS: In this study we measured and analysed the inhibitory effect of ranitidine bismuth citrate (RBC, Pylorid, Tritec) on the activity and kinetics of phospholipase A2 (PLA2) (E.C.3.1.1.4) of commercial cobra (Naja naja) venom and H. pylori (French press lysates) using L-alpha-dipalmitoyl-(2[1-14C]palmitoyl)-phosphatidylcholine as substrate. RESULTS: Our data suggest that RBC might exert a dose-dependent uncompetitive inhibition on PLA2 activity of both H. pylori and Naja naja venom. the inhibitory effect of RBC on the PLA2 activity cannot be abolished by the optimal concentration of calcium (10 mM), indicating its mechanism to be unrelated to the displacement of calcium from the activation site of the enzyme. CONCLUSION: Our results suggest that one of the mechanisms by which bismuth compounds are therapeutically effective in the treatment of H. pylori associated gastritis is by inhibiting the activity of the degradative PLA2 enzyme secreted by H. pylori. As a consequence of the inhibitory action of RBC on PLA2 of the bacteria, the extracellular and/or intracellular phospholipid components of the gastric mucosal barrier are preserved.  (+info)

Heparin binding to cobra basic phospholipase A2 depends on heparin chain length and amino acid specificity. (8/439)

Heparin is shown to bind specifically to the carboxy-terminal region of toxic type I phospholipase A2 from Naja nigricollis (N-PLA2) by competition assay using synthetic polypeptides and heparin affinity chromatography. The binding strength is seen to depend on heparin chain length and the presence of N-sulfate groups of heparin. It is observed that both electrostatic and non-electrostatic interactions are involved in the specific binding of heparin to the carboxy-terminus. When heparin's size is at least a decasaccharide, about two molecules of N-PLA2 bind to one molecule of heparin, as evidenced by the chemical estimate of protein to carbohydrate ratio in such N-PLA2/heparin complexes. Based on such a stoichiometric measurement and computer modeling of the N-PLA2/heparin complex, it is suggested that the binding sites of the two N-PLA2 molecules on one heparin molecule lie on the opposite sides of the heparin chain.  (+info)