Sympathetic neuroeffector transmission in the rat anococcygeus muscle. (1/102)

1. When intracellular recordings were made from preparations of rat anococcygeus muscle, transmural nerve stimulation evoked noradrenergic excitatory junction potentials (EJPs) made up of two distinct components. Both components were abolished by either guanethidine or alpha-adrenoceptor antagonists, indicating that they resulted from the release of transmitter from sympathetic nerves and the subsequent activation of alpha-adrenoceptors. 2. The first component was associated with a transient increase in the intracellular concentration of calcium ions ([Ca2+]i) and a contraction. Although the second component was often associated with a long lasting increase in [Ca2+]i it was not associated with a contraction unless the second component initiated an action potential. 3. The increase in [Ca2+]i associated with the first component resulted from Ca2+ release from an intracellular store and from entry of Ca2+ through voltage-dependent Ca2+ channels. The increase in [Ca2+]i associated with the second component resulted only from the entry of Ca2+ through L-type Ca2+ channels (CaL channels). The depolarization associated with the initial increase in [Ca2+]i was abolished by reducing the external concentration of chloride ions ([Cl-]o), suggesting that it involved the activation of a Cl- conductance. 4. When the relationships between changes in [Ca2+]i, membrane depolarization and contraction produced by an increasing number of sympathetic nerve stimuli were determined in control, and caffeine- and nifedipine-containing solutions, it was found that an increase in [Ca2+]i recorded in nifedipine produced a larger contraction and larger membrane depolarization than did a similar increase in [Ca2+]i recorded in either control or caffeine-containing solutions. These observations indicate that Ca2+ released from stores more readily triggers contraction and membrane depolarization than does Ca2+ entry via CaL channels.  (+info)

Heterogeneity of prejunctional NPY receptor-mediated inhibition of cardiac neurotransmission. (2/102)

Neuropeptide Y (NPY) has been proposed as the candidate inhibitory peptide mediating interactions between sympathetic and vagal neurotransmission in several species, including man. Here, we have defined the NPY receptors involved in modulation of cardiac autonomic neurotransmission using receptor-selective agonists and antagonists in the rabbit and guinea-pig isolated right atria. In isolated atrial preparations, sympathetically-mediated tachycardia (ST; with atropine 1 microM) or vagally-mediated bradycardia (VB; with propranolol 0.1-1 microM) in response to electrical field stimulation (EFS, 1-4 pulses) were tested 0-30 min after incubation with single concentrations of vehicle, NPY (0.01-10 microM), the Y2 receptor agonist N-Acetyl-[Leu28,31]NPY(24-36) (termed N-A[L]NPY(24-36)) or the Y1 receptor agonist [Leu31,Pro34]NPY (LP). The effect of NPY on the concentration-chronotropic response curves to isoprenaline and bethanechol were also assessed. Guinea-pig atria: NPY and N-A[L]NPY(24-36) caused concentration-dependent inhibition of VB and ST to EFS. Both peptides caused maximal inhibition of VB and ST within 10 min incubation and this remained constant. LP caused a concentration-dependent, transient inhibition of ST which was antagonized by the Y1-receptor antagonist GR231118 (0.3 microM), with apparent competitive kinetics. Rabbit atria: NPY (1 or 10 microM) had no effect on VB at any time point, but both NPY and LP caused a transient (approximately 10 min) inhibition of sympathetic tachycardia. This inhibition could be prevented by 0.3 microM GR231118. N-A[L]NPY(24-36) had no effect on ST. NPY had no effect on the response to beta-adrenoceptor stimulation by isoprenaline nor muscarinic-receptor stimulation by bethanechol in either species. Thus, in the guinea-pig, NPY causes a stable inhibition of both VB and ST to EFS via Y2 receptors and transient inhibition of ST via Y1 receptors. In contrast in the rabbit, NPY has no effect on the cardiac vagus and prejunctional inhibition of ST is transient and mediated by a Y1-like receptor (rather than Y2). Therefore it would be surprising if NPY plays a functional role in modulation of cardiac neurotransmission in the rabbit.  (+info)

Effects of A1-adenosine receptor antagonists on purinergic transmission in the guinea-pig vas deferens in vitro. (3/102)

1. Intracellularly recorded excitatory junction potentials (ej.ps) were used to study the effects of adenosine receptor antagonists on neurotransmitter release from postganglionic sympathetic nerve terminals in the guinea-pig vas deferens in vitro. 2. The A1 adenosine receptor antagonists, 8-phenyltheophylline (10 microM) and 8-cyclopentyl-1,3-dipropylxanthine (0.1 microM), increased the amplitude of e.j.ps evoked during trains of 20 stimuli at 1 Hz in the presence, but not in the absence, of the alpha2-adrenoceptor antagonist, yohimbine (1 microM) or the non-selective alpha-adrenoceptor antagonist, phentolamine (1 microM). 3. Adenosine (100 microM) reduced the amplitude of e.j.ps, both in the presence and in the absence of phentolamine (1 microM). This inhibitory effect of adenosine is most likely caused by a reduction in transmitter release as there was no detectable change in spontaneous ej.p. amplitudes. 4. In the presence of phentolamine, application of the adenosine uptake inhibitor, S-(p-nitrobenzyl)-6-thioinosine (0.1 microM), had no effect on ej.p. amplitudes. 5. The phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (100 microM), significantly increased the amplitudes of all e.j.ps evoked during trains of 20 stimuli at 1 Hz, both in the presence and in the absence of phentolamine (1 microM). 6. These results suggest that endogenous adenosine modulates neurotransmitter release by an action at prejunctional A1 adenosine receptors only when alpha2-adrenoceptors are blocked.  (+info)

Specialised sympathetic neuroeffector associations in immature rat iris arterioles. (4/102)

Sympathetic nerve-mediated vasoconstriction in iris arterioles of mature rats occurs via the activation of alpha(1B)-adrenoceptors alone, while in immature rat iris arterioles, vasoconstriction occurs via activation of both alpha1- and alpha2-adrenoceptors. In mature rats the vast majority of sympathetic varicosities form close neuroeffector junctions. Serial section electron microscopy of 14 d iris arterioles has been used to determine whether restriction in physiological receptor types with age may result from the establishment of these close neuroeffector junctions. Ninety varicosities which lay within 4 microm of arteriolar smooth muscle were followed for their entire length. Varicosities rarely contained dense cored vesicles even after treatment with 5-hydroxydopamine. 47 % of varicosities formed close associations with muscle cells and 88 % formed close associations with muscle cells or melanocytes. Varicosities in bundles were as likely as single varicosities to form close associations with vascular smooth muscle cells, although the distribution of synaptic vesicles in single varicosities did not show the asymmetric accumulation towards the smooth muscle cells seen in the varicosities in bundles which were frequently clustered together. We conclude that restriction of physiological receptor types during development does not appear to correlate with the establishment of close neuroeffector junctions, although changes in presynaptic structures may contribute to the refinement of postsynaptic responses.  (+info)

Neuroeffector transmission to different layers of smooth muscle in the rat penile bulb. (5/102)

1. Using intracellular recording techniques, two distinct layers of smooth muscle were identified in the rat penile bulb. The inner muscle layer (parenchyma) exhibited spontaneous action potentials, while the outer sheet (sac) was electrically quiescent. 2. In the parenchyma, transmural stimulation initiated non-adrenergic, non-cholinergic (NANC) inhibitory junction potentials (IJPs) which were abolished by Nomeganitro-L-arginine (LNA) or 1H-[1,2, 4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The amplitude of IJPs was reduced by ouabain, dinitrophenol or decreasing the extracellular potassium concentration ([K+]o) but not by several K+ channel blockers. 3. The parenchyma also received an excitatory innervation mediated by alpha-adrenoceptors which caused a contraction that was not associated with a membrane potential change. 4. In the sac, transmural stimulation initiated two component excitatory junction potentials (EJPs) mediated by alpha-adrenoceptors and associated action potentials. The initial component was more dramatically suppressed than the secondary component by caffeine, ryanodine or cyclopiazonic acid (CPA). Lowering of the extracellular chloride concentration ([Cl-]o) selectively inhibited the rapid component of EJPs, while niflumic acid was less potent. 5. These results suggest that IJPs in the parenchyma result from the release of NO which stimulates sodium pump activity following the activation of guanylate cyclase. In the sac, the activation of alpha-adrenoceptors initiates EJPs by releasing Ca2+ from intracellular stores which activates Ca2+-activated channels.  (+info)

Effects of a selective neuropeptide Y Y2 receptor antagonist, BIIE0246, on Y2 receptors at peripheral neuroeffector junctions. (6/102)

1. This study investigated the effects of BIIE0246, a novel neuropeptide Y (NPY) Y2 receptor antagonist, on the inhibition of cholinergic neuroeffector transmission in rat heart and guinea-pig trachea and purinergic neuroeffector transmission in guinea-pig vas deferens produced by the NPY Y2 receptor agonist, N-acetyl [Leu28,31] NPY 24-36. 2. In pentobarbitone anaesthetized rats, supramaximal stimulation every 30 s, of the vagus nerve innervating the heart, increased pulse interval by approximately 100 ms. This response was attenuated by intravenous administration of N-acetyl [Leu28,31] NPY 24-36 (10 nmol x kg(-1)). 3. Transmural stimulation of segments of guinea-pig trachea at 1 min intervals with 5 s trains of stimuli at 0.5, 5, 10, 20 and 40 Hz evoked contractions which were reduced in force by N-acetyl [Leu28,31] NPY 24-36 (2 microM). 4. In guinea-pig vasa deferentia, the amplitude of excitatory junction potentials evoked by trains of 20 stimuli at 1 Hz was reduced in the presence of N-acetyl [Leu28,31] NPY 24-36 (1 microM). 5. In all preparations BIIE0246 attenuated the inhibitory effect of N-acetyl [Leu28,31] NPY 24-36 but had no effect when applied alone. 6. The findings support the view that the nerve terminals of postganglionic parasympathetic and sympathetic neurones possess neuropeptide Y Y2 receptors which, when activated, reduce neurotransmitter release.  (+info)

Effects of cannabinoids on sympathetic and parasympathetic neuroeffector transmission in the rabbit heart. (7/102)

Cannabinoids elicit marked cardiovascular responses. It is not clear how peripheral effects on the autonomic nervous system contribute to these responses. The aim of the present study was to characterize the peripheral actions of cannabinoids on the autonomic innervation of the heart. Experiments were carried out on pithed rabbits. In the first series of experiments, postganglionic sympathetic cardioaccelerator fibers were stimulated electrically. The synthetic cannabinoid receptor agonists WIN55212-2 (0.005, 0.05, 0.5, and 1.5 mg kg(-1) i.v.) and CP55940 (0.003, 0.03, 0.3, and 1 mg kg(-1) i.v.) dose dependently inhibited the electrically evoked cardioacceleration. The inhibition by WIN55212-2 (0.5 mg kg(-1) i.v.) was prevented by the CB(1) cannabinoid receptor antagonist SR141716A (0.5 mg kg(-1) i.v.). WIN55212-2 (0.5 mg kg(-1) i.v.) did not change the increase in heart rate evoked by injection of isoprenaline. In the second series of experiments, preganglionic vagal fibers were stimulated electrically. WIN55212-2 (0.005, 0.05, and 0.5 mg kg(-1) i.v.) and CP55940 (0.003, 0.03, and 0.3 mg kg(-1) i.v.) dose dependently inhibited the stimulation-evoked decrease in heart rate. The inhibition produced by WIN55212-2 (0.005, 0.05, and 0.5 mg kg(-1) i.v.) was antagonized by SR141716A (0.5 mg kg(-1) i.v.). The results indicate that cannabinoids, by activating CB(1) cannabinoid receptors, inhibit sympathetic and vagal neuroeffector transmission in the heart. The mechanism of the sympathoinhibition is probably presynaptic inhibition of noradrenaline release from postganglionic sympathetic neurons. The mechanism of the inhibition of vagal activity was not clarified: cannabinoids may have an inhibitory action on both pre- and postganglionic vagal neurons.  (+info)

Beta2-adrenoceptor-mediated prejunctional facilitation and postjunctional inhibition of sympathetic neuroeffector transmission in the guinea pig vas deferens. (8/102)

This study examines the role of prejunctional and postjunctional beta-adrenoceptors in the modulation of sympathetic cotransmission in the guinea pig vas deferens. The prejunctional involvement of beta-adrenoceptors was evaluated by testing the effects of several agonists and antagonists on the nerve stimulation-evoked overflow of ATP and norepinephrine (NE) from the "in vitro" vas deferens. The nonsubtype-selective beta-adrenoceptor agonist isoproterenol and the beta2-subtype-selective agonist clenbuterol increased, to a similar degree, the overflow of ATP and NE, while the beta1-subtype-selective agonist xamoterol and the beta3-subtype-selective agonist BRL 37 344 had no effect. Pretreatment with ICI 118, 551, a beta2-subtype-selective antagonist, abolished the facilitation of cotransmitter release by isoproterenol and clenbuterol, while the beta1-subtype-selective antagonist atenolol had no effect. Activation of beta-adrenoceptors by either isoproterenol or clenbuterol, but not by xamoterol and BRL 37 344, reduced the amplitude of contractions evoked by exogenously applied ATP. Pretreatment with propranolol or ICI 118, 551, but not atenolol, prevented these inhibitory effects. Isoproterenol in lower concentrations produced dose-dependent reduction of the purinergic but not the adrenergic phase of nerve stimulation-induced contraction of the guinea pig vas deferens. When applied in concentrations greater than 1 microM, isoproterenol, but not clenbuterol, actually produced a concentration-dependent facilitation of contractions evoked by both nerve stimulation and exogenously applied ATP. Antagonists of alpha-adrenoceptors blocked these facilitatory effects. Together, these results demonstrate that beta2-adrenoceptors can influence sympathetic neuroeffector transmission both prejunctionally, where they facilitate equally well the release of sympathetic cotransmitters and postjunctionally, where they inhibit smooth muscle contractions evoked by ATP.  (+info)