Involvement of brain monoamines in the stimulant and paradoxical inhibitory effects of methylphenidate. (73/414)

The significance of central noradrenergic, dopaminergic and serotonergic neural systems for the locomotor stimulant effects of methylphenidate was investigated in the rat. In order to study the role of brain catecholamines, rats were pretreated with reserpine (2.5 mg/kg) followed 24 hrs later by treatment with alpha-methyltyrosine (25 mg/kg) or U-14,624 (75 mg/kg), a dopamine-beta-hydroxylase inhibitor. In these experiments, methylphenidate stimulated motor activity was antagonized by alpha-methyltyrosine and enhanced after treatment with U-14,624, suggesting that release of newly synthesized dopamine is important to a locomotor stimulant action of methylphenidate. Evidence implicating brain serotonin in the actions of methylphenidate was obtained in rats pretreated with pargyline or p-chlorophenylalanine (PCPA). Administration of pargyline 1 hr prior to methylphenidate was found to reduce the locomotor activity induced by methylphenidate and this was antagonized by pretreatment with low doses of PCPA. Higher doses of PCPA caused a significant elevation of methylphenidate induced activity which could be reduced by 5-hydroxytryptophan. Destruction of serotonergic neurons with 5,7-dihydroxytryptamine also potentiated methylphenidate induced locomotion. These latter findings suggest that serotonergic fibers have an inhibitory function in brain. These results are discussed in relation to the possible mechanism by which methylphenidate may act in hyperkinesis.  (+info)

Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein. (74/414)

"Reaction phenotyping" studies were performed with eletriptan (ETT) to determine its propensity to interact with coadministered medications. Its ability to serve as a substrate for human P-glycoprotein (P-gp) was also investigated since a central mechanism of action has been proposed for this "triptan" class of drug. In studies with a characterized bank of human liver microsome preparations, a good correlation (r2 = 0.932) was obtained between formation of N-desmethyl eletriptan (DETT) and CYP3A4-catalyzed testosterone 6 beta-hydroxylation. DETT was selected to be monitored in our studies since it represents a significant ETT metabolite in humans, circulating at concentrations 10 to 20% of those observed for parent drug. ETT was metabolized to DETT by recombinant CYP2D6 (rCYP2D6) and rCYP3A4, and to a lesser extent by rCYP2C9 and rCYP2C19. The metabolism of ETT to DETT in human liver microsomes was markedly inhibited by troleandomycin, erythromycin, miconazole, and an inhibitory antibody to CYP3A4, but not by inhibitors of other major P450 enzymes. ETT had little inhibitory effect on any of the P450 enzymes investigated. ETT was determined to be a good substrate for human P-gp in vitro. In bidirectional transport studies across LLC-MDR1 and LLC-Mdr1a cell monolayers, ETT had a BA/AB transport ratio in the range 9 to 11. This finding had significance in vivo since brain exposure to ETT was reduced 40-fold in Mdr1a+/+ relative to Mdr1a-/- mice. ETT metabolism to DETT is therefore catalyzed primarily by CYP3A4, and plasma concentrations are expected to be increased when coadministered with inhibitors of CYP3A4 and P-gp activity.  (+info)

Characterization of a novel gastropod toxin (6-bromo-2-mercaptotryptamine) that inhibits shaker K channel activity. (75/414)

A novel potassium channel antagonist has been purified from the defensive mucus secreted by Calliostoma canaliculatum, a marine snail found in the temperate coastal waters of the western Pacific. The toxin is expelled from the hypobranchial gland as part of a defensive response and is contained within a viscous matrix that minimizes dilution and degradation. The active compound was isolated by multistage microbore HPLC separations followed by bioactivity assays. Nuclear magnetic resonance, combined with electrospray ionization Fourier-transform ion cyclotron resonance and electrospray ionization ion trap mass spectrometry indicate that the active component is a heretofore unknown indole-derivative, a disulfide-linked dimer of 6-bromo-2-mercaptotryptamine (BrMT). Exudates from the hypobranchial glands of various marine mollusks have been sources for dye compounds such as 6-6 dibromoindigo, the ancient dye Tyrian purple. BrMT represents the first correlation of a hypobranchial gland exudate with a molecular response. Voltage clamp experiments with a number of K channel subtypes indicate that BrMT inhibits certain voltage-gated K channels of the Kv1 subfamily.  (+info)

Melatonin inhibits nitrate tolerance in isolated coronary arteries. (76/414)

(1) The present study was designed to test the hypothesis that melatonin inhibits nitrate tolerance in coronary arteries. (2) Rings of porcine coronary arteries were suspended in organ chambers for isometric tension recording. Nitrate tolerance was induced by incubating the tissues with nitroglycerin (10(-4) M) for 90 min, followed by repeated rinsing for 1 h. Control rings that had not been exposed previously to nitroglycerin, but were otherwise treated identically, were studied simultaneously. The rings were contracted with U46619 (1-3 x 10(-9) M) and concentration-response curves to nitroglycerin (10(-9)-10(-4) M) were obtained. (3) Nitrate tolerance was evident by a 15- to 20-fold rightward shift in the concentration-response curve to nitroglycerin in rings with and without endothelium exposed previously to the drug for 90 min. Addition of melatonin (10(-9)-10(-7) M) to the organ chamber during the 90-min incubation period with nitroglycerin partially inhibited nitrate tolerance in coronary arteries with intact endothelium; however, melatonin had no effect on nitrate tolerance in coronary arteries without endothelium. (4) The effect of melatonin on nitrate tolerance in coronary arteries with endothelium was abolished by the melatonin receptor antagonist, S20928 (10(-6) M). In contrast to melatonin, the selective MT(3)-melatonin receptor agonist, 5-MCA-NAT (10(-8)-10(-7) M), had no effect on nitrate tolerance in coronary arteries. (5) The results demonstrate that melatonin, acting via specific melatonin receptors, inhibits nitrate tolerance in coronary arteries and that this effect is dependent on the presence of the vascular endothelium.  (+info)

Characterization of the serotoninergic system in the C57BL/6 mouse skin. (77/414)

We showed expression of the tryptophan hydroxylase gene and of tryptophan hydroxylase protein immunoreactivity in mouse skin and skin cells. Extracts from skin and melanocyte samples acetylated serotonin to N-acetylserotonin and tryptamine to N-acetyltryptamine. A different enzyme from arylalkylamine N-acetyltransferase mediated this reaction, as this gene was defective in the C57BL6 mouse, coding predominantly for a protein without enzymatic activity. Serotonin (but not tryptamine) acetylation varied according to hair cycle phase and anatomic location. Serotonin was also metabolized to 5-hydroxytryptophol and 5-hydroxyindole acetic acid, probably through stepwise transformation catalyzed by monoamine oxidase, aldehyde dehydrogenase and aldehyde reductase. Activity of the melatonin-forming enzyme hydroxyindole-O-methyltransferase was notably below detectable levels in all samples of mouse corporal skin, although it was detectable at low levels in the ears and in Cloudman melanoma (derived from the DBA/2 J mouse strain). In conclusion, mouse skin has the molecular and biochemical apparatus necessary to produce and metabolize serotonin and N-acetylserotonin, and its activity is determined by topography, physiological status of the skin, cell type and mouse strain.  (+info)

Investigation of the effects of naratriptan, rizatriptan, and sumatriptan on jugular venous oxygen saturation in anesthetized pigs: implications for their mechanism of acute antimigraine action. (78/414)

The effects of naratriptan, rizatriptan, and sumatriptan on arteriovenous oxygen saturation difference and carotid hemodynamics were compared in the anesthetized pig. Oxygen and carbon dioxide partial pressures in systemic arterial and jugular venous blood as well as hemoglobin oxygen saturation were determined by conventional blood gas analysis. Vehicle (n = 19) or naratriptan, rizatriptan, or sumatriptan (0.63, 2.5, 10, 40, 160, 630, and 2,500 microg/kg i.v.; n = 7/group) were infused cumulatively. In naratriptan-, rizatriptan-, and sumatriptan-treated animals, jugular venous oxygen saturation decreased dose dependently (geometric mean ED50 values of 3.1, 17.9, and 16.0 microg/kg, respectively) concomitantly with increases in carotid vascular resistance. Rizatriptan significantly and dose dependently, from 160 microg/kg, increased PvCO2 (P < 0.05 versus vehicle). Naratriptan and sumatriptan also tended to increase PvCO2 albeit nonstatistically significantly. All three triptans consistently evoked quantitatively similar carotid vasoconstriction, whereas decreases in jugular venous oxygen saturation (VOS) and increases in PvCO2 had different magnitudes and occurred only in around one-half of the animals studied. Maximal variations in PvCO2 were found to correlate highly with those in PvO2 (P = 0.002), but maximal variations in carotid resistance failed to correlate with those in PvCO2 (P = 0.76) or PvO2 (P = 0.28). The results demonstrate that the triptans investigated robustly produced carotid vasoconstriction, but elicited less consistent decreases in VOS and increases in jugular PvCO2, possibly suggestive of distinct mechanisms. Collectively, the data suggest that triptan-induced increases in arteriovenous oxygen saturation difference and carbon dioxide partial pressure in venous blood draining the head are class effects.  (+info)

A COMPARISON OF PLATELET AGGREGATION PRODUCED BY SEVEN COMPOUNDS AND A COMPARISON OF THEIR INHIBITORS. (79/414)

The aggregating effects of adenosine diphosphate, thrombin, 5-hydroxytryptamine, tryptamine, adrenaline and noradrenaline, and tri-ethyl tin have been carefully compared. The first three compounds in some circumstances produce remarkably similar effects although there are important differences. The kinetics of aggregation induced by adrenaline (and noradrenaline) are quite different and the tri-ethyl tin effects are different again. Anti-serotonins specifically inhibit 5-hydroxytryptamine and the anti-adrenaline drug phentolamine specifically inhibits the effects of the catecholamines. Experiments presented suggest but do not prove that aggregation produced by all these compounds is accompanied by the liberation of diphosphate from the platelets and that platelet triphosphate may be converted to diphosphate. How these different compounds all produce this effect is discussed. Either the presence of diphosphate or the action of a triphosphatase might be the immediate cause of aggregation if there is a single final common cause. The anti-adrenaline phentolamine prolongs the bleeding time, so adrenaline or noradrenaline may be involved in platelet phenomena in haemostasis.  (+info)

SOME PHARMACOLOGICAL PROPERTIES OF THIOPROPERAZINE AND THEIR MODIFICATION BY ANTI-PARKINSONIAN DRUGS. (80/414)

The pharmacological properties of a phenothiazine derivative thioproperazine have been compared with those of chlorpromazine, and the modifications by some anti-Parkinsonian drugs of its actions on the central nervous system have been studied. Thioproperazine was less potent than chlorpromazine in lowering blood pressure and antagonizing adrenaline in the cat, in depressing respiratory rate in the rabbit, in producing hypothermia and analgesia and in reducing the minimum anaesthetic dose of hexobarbitone in mice, and in protecting rats from convulsions induced by tryptamine. It was roughly equipotent to chlorpromazine in reducing locomotor activity of mice. Thioproperazine was more potent than chlorpromazine in protecting grouped mice from the acute toxicity of dexamphetamine, in preventing the acute behavioural disturbances produced by dexamphetamine in the rat, in producing a state of experimental catatonia in the rat and in preventing the emetic action of apomorphine in the dog. Hyoscine, benztropine or promethazine greatly reduced the ability of thioproperazine to prevent behavioural changes due to dexamphetamine in the rat and also abolished symptoms of experimental catatonia produced by thioproperazine. In contrast, the antiapomorphine activity of thioproperazine in the dog was not reduced to any extent by hyoscine or benztropine.  (+info)