11q23.1 and 11q25-qter YACs suppress tumour growth in vivo. (1/63574)

Frequent allelic deletion at chromosome 11q22-q23.1 has been described in breast cancer and a number of other malignancies, suggesting putative tumour suppressor gene(s) within the approximately 8 Mb deleted region. In addition, we recently described another locus, at the 11q25-qter region, frequently deleted in breast cancer, suggesting additional tumour suppressor gene(s) in this approximately 2 Mb deleted region. An 11q YAC contig was accessed and three YACs, one containing the candidate gene ATM at 11q23.1, and two contiguous YACs (overlapping for approximately 400-600 kb) overlying most of the 11q25 deleted region, were retrofitted with a G418 resistance marker and transfected into murine A9 fibrosarcoma cells. Selected A9 transfectant clones (and control untransfected and 'irrelevant' alphoid YAC transfectant A9 clones) were assayed for in vivo tumorigenicity in athymic female Balb c-nu/nu mice. All the 11q YAC transfectant clones demonstrated significant tumour suppression compared to the control untransfected and 'irrelevant' YAC transfected A9 cells. These results define two discrete tumour suppressor loci on chromosome 11q by functional complementation, one to a approximately 1.2 Mb region on 11q23.1 (containing the ATM locus) and another to a approximately 400-600 kb subterminal region on 11q25-qter.  (+info)

TIF1gamma, a novel member of the transcriptional intermediary factor 1 family. (2/63574)

We report the cloning and characterization of a novel member of the Transcriptional Intermediary Factor 1 (TIF1) gene family, human TIF1gamma. Similar to TIF1alpha and TIF1beta, the structure of TIF1beta is characterized by multiple domains: RING finger, B boxes, Coiled coil, PHD/TTC, and bromodomain. Although structurally related to TIF1alpha and TIF1beta, TIF1gamma presents several functional differences. In contrast to TIF1alpha, but like TIF1beta, TIF1 does not interact with nuclear receptors in yeast two-hybrid or GST pull-down assays and does not interfere with retinoic acid response in transfected mammalian cells. Whereas TIF1alpha and TIF1beta were previously found to interact with the KRAB silencing domain of KOX1 and with the HP1alpha, MODI (HP1beta) and MOD2 (HP1gamma) heterochromatinic proteins, suggesting that they may participate in a complex involved in heterochromatin-induced gene repression, TIF1gamma does not interact with either the KRAB domain of KOX1 or the HP1 proteins. Nevertheless, TIF1gamma, like TIF1alpha and TIF1beta, exhibits a strong silencing activity when tethered to a promoter. Since deletion of a novel motif unique to the three TIF1 proteins, called TIF1 signature sequence (TSS), abrogates transcriptional repression by TIF1gamma, this motif likely participates in TIF1 dependent repression.  (+info)

Expression of the naturally occurring truncated trkB neurotrophin receptor induces outgrowth of filopodia and processes in neuroblastoma cells. (3/63574)

We have investigated the effects of the truncated trkB receptor isoform T1 (trkB.T1) by transient transfection into mouse N2a neuroblastoma cells. We observed that expression of trkB.T1 leads to a striking change in cell morphology characterized by outgrowth of filopodia and processes. A similar morphological response was also observed in SH-SY5Y human neuroblastoma cells and NIH3T3 fibroblasts transfected with trkB.T1. N2a cells lack endogenous expression of trkB isoforms, but express barely detectable amounts of its ligands, brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4). The morphological change was ligand-independent, since addition of exogenous BDNF or NT-4 or blockade of endogenous trkB ligands did not influence this response. Filopodia and process outgrowth was significantly suppressed when full-length trkB.TK+ was cotransfected together with trkB.T1 and this inhibitory effect was blocked by tyrosine kinase inhibitor K252a. Transfection of trkB.T1 deletion mutants showed that the morphological response is dependent on the extracellular, but not the intracellular domain of the receptor. Our results suggest a novel ligand-independent role for truncated trkB in the regulation of cellular morphology.  (+info)

B-MYB transactivates its own promoter through SP1-binding sites. (4/63574)

B-MYB is an ubiquitous protein required for mammalian cell growth. In this report we show that B-MYB transactivates its own promoter through a 120 bp segment proximal to the transcription start site. The B-MYB-responsive element does not contain myb-binding sites and gel-shift analysis shows that SP1, but not B-MYB, protein contained in SAOS2 cell extracts binds to the 120 bp B-myb promoter fragment. B-MYB-dependent transactivation is cooperatively increased in the presence of SP1, but not SP3 overexpression. When the SP1 elements of the B-myb promoter are transferred in front of a heterologous promoter, an increased response to B-MYB results. In contrast, c-MYB, the prototype member of the Myb family, is not able to activate the luciferase construct containing the SP1 elements. With the use of an SP1-GAL4 fusion protein, we have determined that the cooperative activation occurs through the domain A of SP1. These observations suggest that B-MYB functions as a coactivator of SP1, and that diverse combinations of myb and SP1 sites may dictate the responsiveness of myb-target genes to the various members of the myb family.  (+info)

Arrestin function in G protein-coupled receptor endocytosis requires phosphoinositide binding. (5/63574)

Internalization of agonist-activated G protein-coupled receptors is mediated by non-visual arrestins, which also bind to clathrin and are therefore thought to act as adaptors in the endocytosis process. Phosphoinositides have been implicated in the regulation of intracellular receptor trafficking, and are known to bind to other coat components including AP-2, AP180 and COPI coatomer. Given these observations, we explored the possibility that phosphoinositides play a role in arrestin's function as an adaptor. High-affinity binding sites for phosphoinositides in beta-arrestin (arrestin2) and arrestin3 (beta-arrestin2) were identified, and dissimilar effects of phosphoinositide and inositol phosphate on arrestin interactions with clathrin and receptor were characterized. Alteration of three basic residues in arrestin3 abolished phosphoinositide binding with complete retention of clathrin and receptor binding. Unlike native protein, upon agonist activation, this mutant arrestin3 expressed in COS1 cells neither supported beta2-adrenergic receptor internalization nor did it concentrate in coated pits, although it was recruited to the plasma membrane. These findings indicate that phosphoinositide binding plays a critical regulatory role in delivery of the receptor-arrestin complex to coated pits, perhaps by providing, with activated receptor, a multi-point attachment of arrestin to the plasma membrane.  (+info)

The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. (6/63574)

The extracellular receptor stimulated kinase ERK2 (p42(MAPK))-phosphorylated human cAMP-specific phosphodiesterase PDE4D3 at Ser579 and profoundly reduced ( approximately 75%) its activity. These effects could be reversed by the action of protein phosphatase PP1. The inhibitory state of PDE4D3, engendered by ERK2 phosphorylation, was mimicked by the Ser579-->Asp mutant form of PDE4D3. In COS1 cells transfected to express PDE4D3, challenge with epidermal growth factor (EGF) caused the phosphorylation and inhibition of PDE4D3. This effect was blocked by the MEK inhibitor PD98059 and was not apparent using the Ser579-->Ala mutant form of PDE4D3. Challenge of HEK293 and F442A cells with EGF led to the PD98059-ablatable inhibition of endogenous PDE4D3 and PDE4D5 activities. EGF challenge of COS1 cells transfected to express PDE4D3 increased cAMP levels through a process ablated by PD98059. The activity of the Ser579-->Asp mutant form of PDE4D3 was increased by PKA phosphorylation. The transient form of the EGF-induced inhibition of PDE4D3 is thus suggested to be due to feedback regulation by PKA causing the ablation of the ERK2-induced inhibition of PDE4D3. We identify a novel means of cross-talk between the cAMP and ERK signalling pathways whereby cell stimuli that lead to ERK2 activation may modulate cAMP signalling.  (+info)

Coupling of the cell cycle and myogenesis through the cyclin D1-dependent interaction of MyoD with cdk4. (7/63574)

Proliferating myoblasts express the muscle determination factor, MyoD, throughout the cell cycle in the absence of differentiation. Here we show that a mitogen-sensitive mechanism, involving the direct interaction between MyoD and cdk4, restricts myoblast differentiation to cells that have entered into the G0 phase of the cell cycle under mitogen withdrawal. Interaction between MyoD and cdk4 disrupts MyoD DNA-binding, muscle-specific gene activation and myogenic conversion of 10T1/2 cells independently of cyclin D1 and the CAK activation of cdk4. Forced induction of cyclin D1 in myotubes results in the cytoplasmic to nuclear translocation of cdk4. The specific MyoD-cdk4 interaction in dividing myoblasts, coupled with the cyclin D1-dependent nuclear targeting of cdk4, suggests a mitogen-sensitive mechanism whereby cyclin D1 can regulate MyoD function and the onset of myogenesis by controlling the cellular location of cdk4 rather than the phosphorylation status of MyoD.  (+info)

Assembly requirements of PU.1-Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers. (8/63574)

Gene expression in higher eukaryotes appears to be regulated by specific combinations of transcription factors binding to regulatory sequences. The Ets factor PU.1 and the IRF protein Pip (IRF-4) represent a pair of interacting transcription factors implicated in regulating B cell-specific gene expression. Pip is recruited to its binding site on DNA by phosphorylated PU.1. PU.1-Pip interaction is shown to be template directed and involves two distinct protein-protein interaction surfaces: (i) the ets and IRF DNA-binding domains; and (ii) the phosphorylated PEST region of PU.1 and a lysine-requiring putative alpha-helix in Pip. Thus, a coordinated set of protein-protein and protein-DNA contacts are essential for PU.1-Pip ternary complex assembly. To analyze the function of these factors in vivo, we engineered chimeric repressors containing the ets and IRF DNA-binding domains connected by a flexible POU domain linker. When stably expressed, the wild-type fused dimer strongly repressed the expression of a rearranged immunoglobulin lambda gene, thereby establishing the functional importance of PU.1-Pip complexes in B cell gene expression. Comparative analysis of the wild-type dimer with a series of mutant dimers distinguished a gene regulated by PU.1 and Pip from one regulated by PU.1 alone. This strategy should prove generally useful in analyzing the function of interacting transcription factors in vivo, and for identifying novel genes regulated by such complexes.  (+info)