Role of phospholipase D in agonist-stimulated lysophosphatidic acid synthesis by ovarian cancer cells. (1/351)

Lysophosphatidic acid (LPA) is a receptor-active lipid mediator with a broad range of biological effects. Ovarian cancer cells synthesize LPA, which promotes their motility, growth, and survival. We show that a murine homolog of a human protein previously reported to hydrolyze LPA is a highly selective detergent-stimulated LPA phosphatase that can be used to detect and quantitate LPA. Use of this protein in novel enzymatic assay demonstrates that SK-OV-3 ovarian cancer cells release physiologically relevant levels of biologically active LPA into the extracellular space. LPA release is markedly increased by nucleotide agonists acting through a P2Y4 purinergic receptor. Promotion of LPA formation by nucleotides is accompanied by stimulation of phospholipase D (PLD) activity. Overexpression of both PLD1 and PLD2 in SK-OV-3 cells produces active enzymes, but only overexpression of PLD2 results in significant amplification of both nucleotide-stimulated PLD activity and LPA production. SK-OV-3 cells express and secrete a phospholipase A2 activity that can generate LPA from the lipid product of PLD, phosphatidic acid. Our results identify a novel role for nucleotides in the regulation of ovarian cancer cells and suggest an indirect but critical function for PLD2 in agonist-stimulated LPA production.  (+info)

Selection of functional mutations in the U5-IR stem and loop regions of the Rous sarcoma virus genome. (2/351)

BACKGROUND: The 5' end of the Rous sarcoma virus (RSV) RNA around the primer-binding site forms a series of RNA secondary stem/loop structures (U5-IR stem, TpsiC interaction region, U5-leader stem) that are required for efficient initiation of reverse transcription. The U5-IR stem and loop also encode the U5 integrase (IN) recognition sequence at the level of DNA such that this region has overlapping biological functions in reverse transcription and integration. RESULTS: We have investigated the ability of RSV to tolerate mutations in and around the U5 IR stem and loop. Through the use of viral libraries with blocks of random sequence, we have screened for functional mutants in vivo, growing the virus libraries in turkey embryo fibroblasts. The library representing the U5-IR stem rapidly selects for clones that maintain the structure of the stem, and is subsequently overtaken by wild type sequence. In contrast, in the library representing the U5-IR loop, wild type sequence is found after five rounds of infection but it does not dominate the virus pool, indicating that the mutant sequences identified are able to replicate at or near wild type levels. CONCLUSION: These results indicate that the region of the RNA genome in U5 adjacent to the PBS tolerates much sequence variation even though it is required for multiple biological functions in replication. The in vivo selection method utilized in this study was capable of detecting complex patterns of selection as well as identifying biologically relevant viral mutants.  (+info)

Structural variability of the initiation complex of HIV-1 reverse transcription. (3/351)

HIV-1 reverse transcription is initiated from a tRNA(3)(Lys) molecule annealed to the viral RNA at the primer binding site (PBS), but the structure of the initiation complex of reverse transcription remains controversial. Here, we performed in situ structural probing, as well as in vitro structural and functional studies, of the initiation complexes formed by highly divergent isolates (MAL and NL4.3/HXB2). Our results show that the structure of the initiation complex is not conserved. In MAL, and according to sequence analysis in 14% of HIV-1 isolates, formation of the initiation complex is accompanied by complex rearrangements of the viral RNA, and extensive interactions with tRNA(3)(Lys) are required for efficient initiation of reverse transcription. In NL4.3, HXB2, and most isolates, tRNA(3)(Lys) annealing minimally affects the viral RNA structure and no interaction outside the PBS is required for optimal initiation of reverse transcription. We suggest that in MAL, extensive interactions with tRNA(3)(Lys) are required to drive the structural rearrangements generating the structural elements ultimately recognized by reverse transcriptase. In NL4.3 and HXB2, these elements are already present in the viral RNA prior to tRNA(3)(Lys) annealing, thus explaining that extensive interactions with the primer are not required. Interestingly, such interactions are required in HXB2 mutants designed to use a non-cognate tRNA as primer (tRNA(His)). In the latter case, the extended interactions are required to counteract a negative contribution associate with the alternate primer.  (+info)

Feasibility of human telomerase reverse transcriptase mRNA expression in individual blastomeres as an indicator of early embryo development. (4/351)

PURPOSE: The study was undertaken to test whether human telomerase reverse transcriptase (hTERT) transcripts in an individual blastomere could be used as an indicator for embryo development. METHODS: Group A consisted of day 3 normal cleaving embryos at 4- to 8-cell stage, which were surplus and not allocated for uterine transfer. Group B consisted of arrested or fragmented embryos at the same stage, which were considered to be compromised. After blastomere dissociation, RNA purification, reverse transcription, and hTERT PCR amplification, the amplified product was separated by 3% gel electrophoresis. RESULTS: Eighty-six (90.5%) of the 95 intact blastomeres in group A and 78 (70.9%) of the 110 blastomeres in group B demonstrated hTERT mRNA expression. The difference was statistically significant (P < 0.05, chi-square). Eight (38.1%) of the 21 embryos in group A and 22 (62.9%) of the 35 embryos in group B had at least one blastomere that did not express hTERT mRNA under this procedure. The difference was not significant (P > 0.05, chi-square). CONCLUSIONS: General hTERT mRNA transcripts can be detected in most of the individual blastomeres but cannot be used as an indicator for early embryo development. Further investigations are necessary to elucidate its clinical application.  (+info)

Induction of ovarian cancer cell apoptosis by 1,25-dihydroxyvitamin D3 through the down-regulation of telomerase. (5/351)

The maintenance of telomere length is required for continued cell proliferation, and approximately 85-90% of human cancers, including ovarian epithelial cancers (OCa), show high activity of telomerase. In the present study we report that 1,25-dihydroxyvitamin D(3) (1,25(OH)(2) VD)(3)induces OCa cell apoptosis by down-regulating telomerase. Quantitative reverse transcription-PCR analysis shows that 1,25(OH)(2)VD(3) decreases the level of human telomerase reverse transcriptase (hTERT) mRNA, the catalytic subunit of telomerase. The decrease is not due to transcriptional repression through the putative vitamin D response element present in the 5' regulatory region of hTERT gene. Instead, 1,25(OH)(2) VD(3) decreases the stability of the hTERT mRNA. Stable expression of hTERT in OCa cells decreases their response to 1,25(OH)(2)VD(3)-induced growth suppression. Although the cell cycle progression of these clones stably expressing hTERT is inhibited by 1,25(OH)(2)VD(3) to a similar degree as that of the parental cells, these clones are more resistant to apoptosis induced by 1,25(OH)(2)VD(3) .In contrast to parental cells, which lose proliferation potential after the 1,25(OH)(2)VD(3) treatment, hTERT-expressing clones resume rapid growth after withdrawal of 1,25(OH)(2)VD(3). Overall, the study suggests that the down-regulation of telomerase activity by 1,25(OH)(2)VD(3) and the resulting cell death are important components of the response of OCa cells to 1,25(OH)(2)VD(3)-induced growth suppression.  (+info)

LAP2alpha and BAF collaborate to organize the Moloney murine leukemia virus preintegration complex. (6/351)

Integration of viral DNA into the host genome is an essential step in retroviral replication. The viral DNA made by reverse transcription is a component of the preintegration complex (PIC) that also contains the viral integrase protein, the enzyme that integrates the viral DNA. Several other viral and cellular proteins are present in the PIC, but their functional roles are less well established. Barrier-to-autointegration factor (BAF) is a cellular protein component of the PIC that blocks autointegration of the viral DNA and stimulates intermolecular integration. In uninfected cells, BAF interacts with members of the LEM family of inner nuclear membrane and nucleoplasmic proteins. Here, we demonstrate that one of the LEM proteins, lamina-associated polypeptide 2alpha (LAP2alpha), is a component of the PIC. LAP2alpha stabilizes the association of BAF with the PIC to stimulate intermolecular integration and suppress autointegration. To further understand the role of LAP2alpha, we established LAP2alpha-knockdown cell lines. Depletion of LAP2alpha significantly inhibited viral replication. Our results demonstrate a critical contribution of LAP2alpha to the nucleoprotein organization of the PIC and to viral replication.  (+info)

Relaxed primer specificity associated with reverse transcriptases encoded by the pFOXC retroplasmids of Fusarium oxysporum. (7/351)

The pFOXC mitochondrial retroplasmids are small, autonomously replicating linear DNAs that have a telomere-like repeat of a 5-bp sequence at their termini. The plasmids are possible evolutionary precursors of the ribonucleoprotein complex telomerase, as they encode an active reverse transcriptase (RT) that is involved in plasmid replication. Using an in vitro system to study reverse transcription, we show that the pFOXC RT is capable of copying in vitro-synthesized RNAs by use of cDNA primers or extension of snapped-back RNA templates. The ability of the pFOXC RT to use base-paired primers distinguishes it from the closely related RTs encoded by the Mauriceville and Varkud mitochondrial retroplasmids of Neurospora spp. Reaction products are similar, but not identical, to those obtained with conventional RTs, and differences reflect the ability of the pFOXC RT to initiate cDNA synthesis with loosely associated primers. The pFOXC RT can also copy DNA templates and extend 3' mismatched DNA oligonucleotide primers. Analysis of pFOXC in vivo replication intermediates suggests that telomeric repeats are added during reverse transcription, and the ability to extend loosely associated primers could play a role in repeat formation by mechanisms similar to those associated with telomerase and certain non-long-terminal-repeat retrotransposons.  (+info)

HOPPSIGEN: a database of human and mouse processed pseudogenes. (8/351)

Processed pseudogenes result from reverse transcribed mRNAs. In general, because processed pseudogenes lack promoters, they are no longer functional from the moment they are inserted into the genome. Subsequently, they freely accumulate substitutions, insertions and deletions. Moreover, the ancestral structure of processed pseudogenes could be easily inferred using the sequence of their functional homologous genes. Owing to these characteristics, processed pseudogenes represent good neutral markers for studying genome evolution. Recently, there is an increasing interest for these markers, particularly to help gene prediction in the field of genome annotation, functional genomics and genome evolution analysis (patterns of substitution). For these reasons, we have developed a method to annotate processed pseudogenes in complete genomes. To make them useful to different fields of research, we stored them in a nucleic acid database after having annotated them. In this work, we screened both mouse and human complete genomes from ENSEMBL to find processed pseudogenes generated from functional genes with introns. We used a conservative method to detect processed pseudogenes in order to minimize the rate of false positive sequences. Within processed pseudogenes, some are still having a conserved open reading frame and some have overlapping gene locations. We designated as retroelements all reverse transcribed sequences and more strictly, we designated as processed pseudogenes, all retroelements not falling in the two former categories (having a conserved open reading or overlapping gene locations). We annotated 5823 retroelements (5206 processed pseudogenes) in the human genome and 3934 (3428 processed pseudogenes) in the mouse genome. Compared to previous estimations, the total number of processed pseudogenes was underestimated but the aim of this procedure was to generate a high-quality dataset. To facilitate the use of processed pseudogenes in studying genome structure and evolution, DNA sequences from processed pseudogenes, and their functional reverse transcribed homologs, are now stored in a nucleic acid database, HOPPSIGEN. HOPPSIGEN can be browsed on the PBIL (Pole Bioinformatique Lyonnais) World Wide Web server (http://pbil.univ-lyon1.fr/) or fully downloaded for local installation.  (+info)