Viral evolution revealed by bacteriophage PRD1 and human adenovirus coat protein structures. (1/13)

The unusual bacteriophage PRD1 features a membrane beneath its icosahedral protein coat. The crystal structure of the major coat protein, P3, at 1.85 A resolution reveals a molecule with three interlocking subunits, each with two eight-stranded viral jelly rolls normal to the viral capsid, and putative membrane-interacting regions. Surprisingly, the P3 molecule closely resembles hexon, the equivalent protein in human adenovirus. Both viruses also have similar overall architecture, with identical capsid lattices and attachment proteins at their vertices. Although these two dsDNA viruses infect hosts from very different kingdoms, their striking similarities, from major coat protein through capsid architecture, strongly suggest their evolutionary relationship.  (+info)

A new mutant class, made by targeted mutagenesis, of phage PRD1 reveals that protein P5 connects the receptor binding protein to the vertex. (2/13)

Phage PRD1 and adenovirus share a number of structural and functional similarities, one of which is the vertex organization at the fivefold-symmetry positions. We developed an in vitro mutagenesis system for the linear PRD1 genome in order to make targeted mutations. The role of protein P5 in the vertex structure was examined by this method. Mutation in gene V revealed that protein P5 is essential. The absence of P5 did not compromise the particle assembly or DNA packaging but led to a deficient vertex structure where the receptor binding protein P2, in addition to protein P5, was missing. P5(-) particles also lost their DNA upon purification. Based on this and previously published information we propose a spatial model for the spike structure at the vertices. This resembles to the corresponding structure in adenovirus.  (+info)

pGIL01, a linear tectiviral plasmid prophage originating from Bacillus thuringiensis serovar israelensis. (3/13)

Bacillus thuringiensis serovar israelensis harbours, in addition to several circular plasmids, a small linear molecule of about 15 kb. Sequence analysis of this molecule, named pGIL01, showed the presence of at least 30 ORFs, five of which displayed similarity with proteins involved in phage systems: a B-type family DNA polymerase, a LexA-like repressor, two potential muramidases and a DNA-packaging protein (distantly related to the P9 protein of the tectiviral phage PRD1). Experimental evidence confirmed that pGIL01 indeed corresponds to the linear prophage of a temperate phage. This bacteriophage, named GIL01, produces small turbid plaques and is sensitive to organic solvents, which suggests the presence of lipid components in its capsid. Experiments using proteases and exonucleases also revealed that proteins are linked to the genomes of both pGIL01 prophage and GIL01 phage at their 5' extremities. Altogether, these features are reminiscent of those of phages found in the Tectiviridae family, and more specifically of those of PRD1, a broad-host-range phage of Gram-negative bacteria. Dot-blot hybridization, PFGE, PCR and RFLP analyses also showed the presence of pGIL01 variants in the Bacillus cereus group.  (+info)

Phospholipid molecular species profiles of tectiviruses infecting Gram-negative and Gram-positive hosts. (4/13)

The phospholipid (PL) molecular species compositions of bacteriophages PRD1 and Bam35 as well as their respective hosts were determined quantitatively using liquid chromatography/electrospray ionization mass-spectrometry (LC-ESI-MS) and backed up by gas-chromatographic/mass-spectrometric (GC-MS) analysis of the total fatty acids (FAs). The results showed that both viruses contain significantly more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host membranes. Only modest differences in the molecular species composition of the viruses and their respective hosts were observed, indicating that the virus assembly process is relatively nonselective in respect of the fatty acid (FA) proportion of phospholipids (PL). These data indicate that the PL composition of these two viruses is largely, albeit not exclusively, determined by the availability of phospholipids in the host membrane.  (+info)

GIL16, a new gram-positive tectiviral phage related to the Bacillus thuringiensis GIL01 and the Bacillus cereus pBClin15 elements. (5/13)

One of the most notable characteristics of Tectiviridae resides in their double-layer coats: the double-stranded DNA is located within a flexible lipoprotein vesicle covered by a rigid protein capsid. Despite their apparent rarity, tectiviruses have an extremely wide distribution compared to other phage groups. Members of this family have been found to infect gram-negative (PRD1 and relatives) as well as gram-positive (Bam35, GIL01, AP50, and phiNS11) hosts. Several reports have shown that tectiviruses infecting gram-negative bacteria are closely related, whereas no information is currently available on the genetic relationship among those infecting gram-positive bacteria. The present study reports the sequence of GIL16, a new isolate originating from Bacillus thuringiensis, and a genetic comparison of this isolate with the tectiviral bacteriophages Bam35 and GIL01, which originated from B. thuringiensis serovars Alesti and Israelensis, respectively. In contrast to PRD1 and its relatives, these are temperate bacteriophages existing as autonomous linear prophages within the host cell. Mutations in a particular motif in both the GIL01 and GIL16 phages are also shown to correlate with a switch to the lytic cycle. Interestingly, both bacterial viruses displayed narrow, yet slightly different, host spectrums. We also explore the hypothesis that pBClin15, a linear plasmid hosted by the Bacillus cereus reference strain ATCC 14579, is also a prophage. Sequencing of its inverted repeats at both extremities and a comparison with GIL01 and GIL16 emphasize its relationship to the Tectiviridae.  (+info)

Membrane proteins modulate the bilayer curvature in the bacterial virus Bam35. (6/13)

Biological membranes control the flow of molecules into and out of cells, and they transmit information about the milieu. Structural studies of membrane-containing viruses provide one way to study these membranes in situ. Cryo-electron microscopy and image reconstruction of bacteriophage Bam35 to 7.3 A resolution revealed a membrane bilayer constrained within an icosahedrally symmetric pseudo T = 25 capsid. A total of 60 large transmembrane protein complexes affect the curvature and thickness of the membrane. Here, we describe these membrane parameters quantitatively. Furthermore, we show that Bam35 differs from bacteriophage PRD1 in these parameters, even though the two viruses share the same principles of capsid architecture. Most notably, each virus possesses a tape measure protein suggesting a general mechanism for capsid size determination in icosahedral viruses.  (+info)

Biochemical and structural characterisation of membrane-containing icosahedral dsDNA bacteriophages infecting thermophilic Thermus thermophilus. (7/13)

 (+info)

Molecular characterization of a variant of Bacillus anthracis-specific phage AP50 with improved bacteriolytic activity. (8/13)

 (+info)