Expression of antioxidant protective proteins in the rat retina during prenatal and postnatal development. (25/10141)

PURPOSE: In retinopathy of prematurity, capillary growth in the retina is attenuated. Subsequent cyclic elevation of oxygen levels leads to renewed capillary growth that may eventually result in retinal detachment. It is hypothesized that the sensitivity of the premature retina to oxidative shock results from the absence of antioxidant protective proteins. METHODS: The expression of heme oxygenase-1, metallothionein, superoxide dismutase, and catalase mRNAs was measured in retinas of rats from 6 days before birth to 4 days after birth using in situ hybridization and semiquantitative reverse transcription-polymerase chain reaction with Southern blot analysis. RESULTS: Superoxide dismutase mRNA was expressed to a similar extent at all time points. Metallothionein mRNA expression, which was high at embryonic days (E) 16 and 18, decreased to low levels by the time of birth and remained low at least until 4 days after birth. Catalase mRNA expression was low until birth and increased until at least postnatal day 4. Heme oxygenase-1 mRNA showed low expression at E16 and E18, increased before birth, and then diminished. CONCLUSIONS: Four antioxidant protein mRNAs showed very different patterns of expression in the rat retina. Two of these proteins, heme oxygenase-1 and catalase, were expressed at relatively low levels until approximately the time of birth. The former is important in protection against heme-mediated generation of reactive oxygen species, whereas the latter protects against hydrogen peroxide-generated damage. As a result of the low expression of these mRNAs, and presumably the proteins encoded by them, the premature rat (and probably the premature human) is likely to be born without a full complement of antioxidant defenses.  (+info)

Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor. (26/10141)

PURPOSE: Vascular endothelial growth factor (VEGF) is a potent angiogenic factor expressed as multiple RNA transcripts due to alternative splicing. During an investigation of the expression of VEGF mRNA in human Muller cells cultured under hypoxic conditions, a cDNA species was isolated whose size was incompatible with known VEGF transcripts. This study was performed to determine the nucleotide sequence of the candidate VEGF species and examine the effects of hypoxia on its expression. METHODS: Cultured human Muller cells were exposed to normoxic (20% O2, 5% CO2, 75% N2) or hypoxic (2% O2, 5% CO2, 93% N2) conditions at 37 degrees C for 4 hours and processed for reverse transcription-polymerase chain reaction (RT-PCR), molecular cloning, Southern hybridization, nucleotide sequencing, semiquantitative RT-PCR, and ribonuclease protection assay. RESULTS: The nucleotide sequence of the novel VEGF species isolated from human Muller cells had a short exon 6-encoded sequence without 18-bp nucleotides immediately upstream of the exon 7-encoded sequence in VEGF189. The 18-bp deletion (corresponding to the six amino acids Tyr-Lys-Ser-Trp-Ser-Val) was compatible with a polypeptide containing 183 amino acids (VEGF183). Although VEGF183 mRNA was found in all tissues studied, its expression seemed to be higher than that of VEGF 189 in the brain and spleen; lower in the kidney, retina, skeletal muscle, and liver; and at similar level in the heart. Exposure to hypoxic conditions for 4 hours promoted increased levels of VEGF mRNA including that of VEGF183. CONCLUSIONS: The expression of the novel isoform VEGF 183 in human Muller cells, its variable tissue expression, and its modulation by hypoxia may provide another pathway for VEGF induction of angiogenesis in the retina.  (+info)

Methylation of the ABL1 promoter in chronic myelogenous leukemia: lack of prognostic significance. (27/10141)

The BCR-ABL chromosomal translocation is a central event in the pathogenesis of chronic myelogenous leukemia (CML). One of the ABL1 promoters (Pa) and the coding region of the gene are usually translocated intact to the BCR locus, but the translocated promoter appears to be silent in most cases. Recently, hypermethylation of Pa was demonstrated in CML and was proposed to mark advanced stages of the disease. To study this issue, we measured Pa methylation in CML using Southern blot analysis. Of 110 evaluable samples, 23 (21%) had no methylation, 17 (15%) had minimal (<15%) methylation, 12 (11%) had moderate methylation (15% to 25%), and 58 (53%) had high levels of methylation (>25%) at the ABL1 locus. High methylation was more frequent in advanced cases of CML. Among the 76 evaluable patients in early chronic phase (ECP), a major cytogenetic response with interferon-based therapy was observed in 14 of 34 patients with high methylation compared with 19 of 42 among the others (41% v 45%; P value not significant). At a median follow-up of 7 years, there was no significant difference in survival by ABL1 methylation category. Among patients who achieved a major cytogenetic response, low levels of methylation were associated with a trend towards improved survival, but this trend did not reach statistical significance. Thus, Pa methylation in CML is associated with disease progression but does not appear to predict for survival or response to interferon-based therapy.  (+info)

Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. (28/10141)

BACKGROUND: Human cancer cell lines grown in the presence of the cytotoxic agent mitoxantrone frequently develop resistance associated with a reduction in intracellular drug accumulation without increased expression of the known drug resistance transporters P-glycoprotein and multidrug resistance protein (also known as multidrug resistance-associated protein). Breast cancer resistance protein (BCRP) is a recently described adenosine triphosphate-binding cassette transporter associated with resistance to mitoxantrone and anthracyclines. This study was undertaken to test the prevalence of BCRP overexpression in cell lines selected for growth in the presence of mitoxantrone. METHODS: Total cellular RNA or poly A+ RNA and genomic DNA were isolated from parental and drug-selected cell lines. Expression of BCRP messenger RNA (mRNA) and amplification of the BCRP gene were analyzed by northern and Southern blot hybridization, respectively. RESULTS: A variety of drug-resistant human cancer cell lines derived by selection with mitoxantrone markedly overexpressed BCRP mRNA; these cell lines included sublines of human breast carcinoma (MCF-7), colon carcinoma (S1 and HT29), gastric carcinoma (EPG85-257), fibrosarcoma (EPF86-079), and myeloma (8226) origins. Analysis of genomic DNA from BCRP-overexpressing MCF-7/MX cells demonstrated that the BCRP gene was also amplified in these cells. CONCLUSIONS: Overexpression of BCRP mRNA is frequently observed in multidrug-resistant cell lines selected with mitoxantrone, suggesting that BCRP is likely to be a major cellular defense mechanism elicited in response to exposure to this drug. It is likely that BCRP is the putative "mitoxantrone transporter" hypothesized to be present in these cell lines.  (+info)

CYP2D6 polymorphism in a Gabonese population: contribution of the CYP2D6*2 and CYP2D6*17 alleles to the high prevalence of the intermediate metabolic phenotype. (29/10141)

AIMS: To determine the molecular basis of the intermediate extensive metaboliser (EM) CYP2D6 phenotype in healthy Gabonese subjects. METHODS: The CYP2D6 phenotype of 154 healthy Gabonese subjects was assessed by giving the subject a single dose of 30 mg dextromethorphan, and collecting their urine for the next 8 h. The CYP2D6 genotype was determined for 50 individuals of the EM phenotypic group by Southern blotting and various PCR-based procedures aimed at identifying different CYP2D6 alleles. RESULTS: We found that in the studied Gabonese population, as compared with a French population, there is significantly higher frequency of intermediate EM phenotype having lower frequency of CYP2D6 PM alleles. To clarify this discrepancy phenotype-genotype relationship was studied. We found that the CYP2D6*17 and CYP2D6*2 alleles, prevalent in this black population, are characterised by their low capacity for dextromethorphan demethylation. Our data also show that the CYP2D6*1 allele is associated with the highest in vivo activity followed by the CYP2D6*2 allele and then the CYP2D6*17 allele. CONCLUSIONS: The higher frequencies of the CYP2D6*2 and CYP2D6*17 alleles than the CYP2D6*1 allele account for the high frequency of the intermediate EM phenotype in this black population. The polymorphism of the CYP2D6 enzyme activity in African populations could have important implications for use of drugs that are substrates for CYP2D6 and have a narrow therapeutic window.  (+info)

Identification of megalin/gp330 as a receptor for lipoprotein(a) in vitro. (30/10141)

Lipoprotein(a) [Lp(a)] is an atherogenic lipoprotein of unknown physiological function. The mechanism of Lp(a) atherogenicity as well as its catabolic pathways are only incompletely understood at present. In this report, we show that the low density lipoprotein receptor (LDLR) gene family member megalin/glycoprotein (gp) 330 is capable of binding and mediating the cellular uptake and degradation of Lp(a) in vitro. A mouse embryonic yolk sac cell line with native expression of megalin/gp330 but genetically deficient in LDLR-related protein (LRP) and a control cell line carrying a double knockout for both LRP and megalin/gp330 were compared with regard to their ability to bind, internalize, and degrade dioctadecyltetramethylindocarbocyanine perchlorate (DiI)-fluorescence-labeled Lp(a) as well as equimolar amounts of 125I-labeled Lp(a) and LDL. Uptake and degradation of radiolabeled Lp(a) by the megalin/gp330-expressing cells were, on average, 2-fold higher than that of control cells. This difference could be completely abolished by addition of the receptor-associated protein, an inhibitor of ligand binding to megalin/gp330. Mutual suppression of the uptake of 125I-Lp(a) and of 125I-LDL by both unlabeled Lp(a) and LDL suggested that Lp(a) uptake is mediated at least partially by apolipoprotein B100. Binding and uptake of DiI-Lp(a) resulted in strong signals on megalin/gp330-expressing cells versus background only on control cells. In addition, we show that purified megalin/gp330, immobilized on a sensor chip, directly binds Lp(a) in a Ca2+-dependent manner with an affinity similar to that for LDL. We conclude that megalin/gp330 binds Lp(a) in vitro and is capable of mediating its cellular uptake and degradation.  (+info)

Irradiation induces upregulation of CD31 in human endothelial cells. (31/10141)

Radiation-induced vascular injury is believed to be a major factor contributing to parenchymal atrophy, fibrosis and necrosis in normal tissue after radiotherapy. In this study irradiation of human umbilical vein endothelial cells (HUVECs) significantly increased adherence of U-937 cells in a time-dependent manner. Given the potential multifunctional role of CD31 in the vasculature we have examined the possible effects of irradiation on levels of CD31 expression in HUVECs. Irradiation upregulated CD31 expression on HUVECs, independently of initial plating density and radiation-induced changes such as cell number, cell cycle stage, or cell size. CD31 mRNA levels were raised in irradiated HUVECs relative to controls. Both CD31 mRNA and surface protein showed similar changes, suggesting that the increase in mRNA in irradiated HUVECs is responsible for the elevation in cell surface protein. A semi-quantitative study of tissue specimens from patients who had received radiotherapy indicated that CD31 staining in the blood vessels from irradiated tissues was increased compared with controls. Endothelial CD31 is important in the transmigration of leukocytes. We have demonstrated that the incorporation of monoclonal antibody to CD31 significantly inhibited the transmigration of human peripheral blood leukocytes through a monolayer of irradiated HUVECs. Taken together these data strongly suggest that irradiation induces a marked increase in CD31 expression on endothelial cells as part of a general response to irradiation. Its upregulation may play an important role in the development of radiation-induced normal tissue damage and thus is a possible target for therapeutic intervention.  (+info)

Regiochemical control of monolignol radical coupling: a new paradigm for lignin and lignan biosynthesis. (32/10141)

BACKGROUND: Although the lignins and lignans, both monolignol-derived coupling products, account for nearly 30% of the organic carbon circulating in the biosphere, the biosynthetic mechanism of their formation has been poorly understood. The prevailing view has been that lignins and lignans are produced by random free-radical polymerization and coupling, respectively. This view is challenged, mechanistically, by the recent discovery of dirigent proteins that precisely determine both the regiochemical and stereoselective outcome of monolignol radical coupling. RESULTS: To understand further the regulation and control of monolignol coupling, leading to both lignan and lignin formation, we sought to clone the first genes encoding dirigent proteins from several species. The encoding genes, described here, have no sequence homology with any other protein of known function. When expressed in a heterologous system, the recombinant protein was able to confer strict regiochemical and stereochemical control on monolignol free-radical coupling. The expression in plants of dirigent proteins and proposed dirigent protein arrays in developing xylem and in other lignified tissues indicates roles for these proteins in both lignan formation and lignification. CONCLUSIONS: The first understanding of regiochemical and stereochemical control of monolignol coupling in lignan biosynthesis has been established via the participation of a new class of dirigent proteins. Immunological studies have also implicated the involvement of potential corresponding arrays of dirigent protein sites in controlling lignin biopolymer assembly.  (+info)