Telomere loss in somatic cells of Drosophila causes cell cycle arrest and apoptosis. (1/785)

Checkpoint mechanisms that respond to DNA damage in the mitotic cell cycle are necessary to maintain the fidelity of chromosome transmission. These mechanisms must be able to distinguish the normal telomeres of linear chromosomes from double-strand break damage. However, on several occasions, Drosophila chromosomes that lack their normal telomeric DNA have been recovered, raising the issue of whether Drosophila is able to distinguish telomeric termini from nontelomeric breaks. We used site-specific recombination on a dispensable chromosome to induce the formation of a dicentric chromosome and an acentric, telomere-bearing, chromosome fragment in somatic cells of Drosophila melanogaster. The acentric fragment is lost when cells divide and the dicentric breaks, transmitting a chromosome that has lost a telomere to each daughter cell. In the eye imaginal disc, cells with a newly broken chromosome initially experience mitotic arrest and then undergo apoptosis when cells are induced to divide as the eye differentiates. Therefore, Drosophila cells can detect and respond to a single broken chromosome. It follows that transmissible chromosomes lacking normal telomeric DNA nonetheless must possess functional telomeres. We conclude that Drosophila telomeres can be established and maintained by a mechanism that does not rely on the terminal DNA sequence.  (+info)

Der(22) syndrome and velo-cardio-facial syndrome/DiGeorge syndrome share a 1.5-Mb region of overlap on chromosome 22q11. (2/785)

Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.  (+info)

Low-copy repeats mediate the common 3-Mb deletion in patients with velo-cardio-facial syndrome. (3/785)

Velo-cardio-facial syndrome (VCFS) is the most common microdeletion syndrome in humans. It occurs with an estimated frequency of 1 in 4, 000 live births. Most cases occur sporadically, indicating that the deletion is recurrent in the population. More than 90% of patients with VCFS and a 22q11 deletion have a similar 3-Mb hemizygous deletion, suggesting that sequences at the breakpoints confer susceptibility to rearrangements. To define the region containing the chromosome breakpoints, we constructed an 8-kb-resolution physical map. We identified a low-copy repeat in the vicinity of both breakpoints. A set of genetic markers were integrated into the physical map to determine whether the deletions occur within the repeat. Haplotype analysis with genetic markers that flank the repeats showed that most patients with VCFS had deletion breakpoints in the repeat. Within the repeat is a 200-kb duplication of sequences, including a tandem repeat of genes/pseudogenes, surrounding the breakpoints. The genes in the repeat are GGT, BCRL, V7-rel, POM121-like, and GGT-rel. Physical mapping and genomic fingerprint analysis showed that the repeats are virtually identical in the 200-kb region, suggesting that the deletion is mediated by homologous recombination. Examination of two three-generation families showed that meiotic intrachromosomal recombination mediated the deletion.  (+info)

Delineation of the critical deletion region for congenital heart defects, on chromosome 8p23.1. (4/785)

Deletions in the distal region of chromosome 8p (del8p) are associated with congenital heart malformations. Other major manifestations include microcephaly, intrauterine growth retardation, mental retardation, and a characteristic hyperactive, impulsive behavior. We studied genotype-phenotype correlations in nine unrelated patients with a de novo del8p, by using the combination of classic cytogenetics, FISH, and the analysis of polymorphic DNA markers. With the exception of one large terminal deletion, all deletions were interstitial. In five patients, a commonly deleted region of approximately 6 Mb was present, with breakpoints clustering in the same regions. One patient without a heart defect or microcephaly but with mild mental retardation and characteristic behavior had a smaller deletion within this commonly deleted region. Two patients without a heart defect had a more proximal interstitial deletion that did not overlap with the commonly deleted region. Taken together, these data allowed us to define the critical deletion regions for the major features of a del8p.  (+info)

Development and validation of a quantitative polymerase chain reaction assay to evaluate minimal residual disease for T-cell acute lymphoblastic leukemia and follicular lymphoma. (5/785)

The presence of occult disease in cancer patients after therapy is one of the major problems faced by oncologists. For example, although 95% of pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients have a complete therapeutic response to multiagent chemotherapy, half will relapse, indicating that they must have harbored low levels of residual cancer cells at the end of therapy. Sensitive detection assays promise to help identify those patients that carry this minimal residual disease (MRD) and are at risk of relapse. We have developed and validated a quantitative polymerase chain reaction (PCR) assay targeting tumor-specific chromosomal rearrangements, including del(1) involving the tal-1 locus in pediatric T-ALL and t(14;18) involving the bcl-2 locus in follicular lymphoma. This quantitative PCR assay utilizes a synthetic internal calibration standard (ICS) that contains priming sequences identical to those found flanking the chromosomal rearrangement breakpoints. Using this ICS-PCR method, the limits of detection were 5 tumor cells at ratios of 1 tumor cell in 10(5) normal cells and a linear range up to 100% tumor cells. This ICS-PCR method has also performed well in terms of precision and accuracy as indicated by low coefficients of variation, minimal random, proportional, and constant errors, and good clinical sensitivity and specificity characteristics. This technique will allow for the evaluation of parameters such as the rate of therapeutic response and the levels of MRD as predictors of patient outcome.  (+info)

Nonrandom cytogenetic alterations in hepatocellular carcinoma from transgenic mice overexpressing c-Myc and transforming growth factor-alpha in the liver. (6/785)

Identification of specific and primary chromosomal alterations during the course of neoplastic development is an essential part of defining the genetic basis of cancer. We have developed a transgenic mouse model for liver neoplasia in which chromosomal lesions associated with both the initial stages of the neoplastic process and the acquisition of malignancy can be analyzed. Here we analyze chromosomal alterations in 11 hepatocellular carcinomas from the c-myc/TGF-alpha double-transgenic mice by fluorescent in situ hybridization with whole chromosome probes, single-copy genes, and 4'-6-diamidino-2-phenylindole (DAPI-) and G-banded chromosomes and report nonrandom cytogenetic alterations associated with the tumor development. All tumors were aneuploid and exhibited nonrandom structural and numerical alterations. A balanced translocation t(5:6)(G1;F2) was identified by two-color fluorescent in situ hybridization in all tumors, and, using a genomic probe, the c-myc transgene was localized near the breakpoint on derivative chromosome der 6. Partial or complete loss of chromosome 4 was observed in all tumors with nonrandom breakage in band C2. Deletions of chromosome 1 were observed in 80% of the tumors, with the most frequent deletion at the border of bands C4 and C5. An entire copy of chromosome 7 was lost in 80% of the tumors cells. Eighty-five percent of the tumor cells had lost one copy of chromosome 12, and the most common breakpoint on chromosome 12 occurred at band D3 (28%). A copy of chromosome 14 was lost in 72%, and band 14E1 was deleted in 32% of the tumor cells. The X chromosome was lost in the majority of the tumor cells. The most frequent deletion on the X chromosome involved band F1. We have previously shown that breakages of chromosomes 1, 6, 7, and 12 were observed before the appearance of morphologically distinct neoplastic liver lesions in this transgenic mouse model. Thus breakpoints on chromosome 4, 9, 14, and X appear to be later events in this model of liver neoplasia. This is the first study to demonstrate that specific sites of chromosomal breakage observed during a period of chromosomal instability in early stages of carcinogenesis are later involved in stable rearrangements in solid tumors. The identification of the 5;6 translocation in all of the tumors has a special significance, being the first balanced translocation reported in human and mouse hepatocellular carcinoma and having the breakpoint near a tumor susceptibility gene and myc transgene site of integration. Moreover, its early occurrence indicates that this is a primary and relevant alteration to the initiation of the neoplastic process. In addition, the concordance between the breakpoints observed during the early dysplastic stage of hepatocarcinogenesis and the stable deletions of chromosomes 1, 4, 6, 7, 9, and 12 in the tumors provides evidence for preferential site of genetic changes in hepatocarcinogenesis.  (+info)

Increased chromosomal instability in peripheral lymphocytes and risk of human gliomas. (7/785)

Brain tumors exhibit considerable chromosome instability (CIN), suggesting that genetic susceptibility may contribute to brain tumorigenesis. To test this hypothesis, in this pilot study, we examined for CIN in short-term lymphocyte cultures from 25 adult glioma patients and 28 age-, sex- and ethnicity-matched healthy controls (all Caucasian). We evaluated CIN by a multicolor fluorescence in situ hybridization assay using two probes: a classic satellite probe for a large heterochromatin breakage-prone region of chromosome 1 and an alpha satellite probe for a smaller region adjacent to the heterochromatin probe. Our results showed a significant increase in the mean number of spontaneous breaks per 1000 cells in glioma patients (mean +/- SD, 2.4+/-0.8) compared with controls (1.4+/-0.9; P < 0.001). By using the median number of breaks per 1000 cells in the controls as the cutoff value, we observed a crude odds ratio (OR) of 8.5 [95% confidence interval (CI) = 2.05-34.9, P < 0.001] for spontaneous breaks and brain tumor risk. After adjustment for age, sex and smoking status, the adjusted OR was 15.3 (95% CI, 2.71-87.8). A significant increase in cells with chromosome 1 aneuploidy (in the form of hyperdiploidy) (P < 0.001) was also observed in the glioma cases, with an adjusted OR of 6.6 (95% CI = 1.5-30, P < 0.05). These findings suggest that CIN can be detected in the peripheral blood lymphocytes of brain tumor patients and may be a marker for identifying individuals at risk.  (+info)

Rearrangements of chromosome band 1p36 in non-Hodgkin's lymphoma. (8/785)

We studied 850 consecutive cases of histologically ascertained pretreatment non-Hodgkin's lymphoma with cytogenetically abnormal clones. The diagnostic karyotypes revealed that 12% of these cases exhibited structural rearrangements involving chromosome band 1p36. Here, we describe the karyotypes of 53 cases containing a 1p36 rearrangement [often involving translocations of unknown material and presented as add(1)(p36)]. We used fluorescence in situ hybridization to determine the origin of the translocation partners. We report three different recurrent translocations involving 1p36. These include der(1)t(1;1)(p36;q21) (three cases), der(1)t(1;1)(p36;q25) (three cases), and der(1)t(1;9)(p36;q13) (four cases). Using cytogenetic and fluorescence in situ hybridization analyses, we have resolved the translocation partners in 31 cases. Rearrangements of band 1p36 were found among different histopathological subtypes. Alterations of 1p36 never occurred as a sole abnormality, and in 42 of 53 cases, alterations of the band 14q32 were observed. The t(14;18)(q32;q21) translocation was present in 35 cases. The significantly high occurrence of 1p36 breakpoint in structural rearrangements and its involvement in recurrent translocations suggest that the region is bearing gene(s) that are important in lymphomagenesis. Our study also showed that cytogenetically evident deletions were frequent in chromosome 1p, almost always involving the p36 region, whereas duplications were rare and never encompassed the p36 region. Chromosome band 1p36 harbors many candidate tumor suppressor genes, and we propose that one or more of these genes might be deleted or functionally disrupted as a molecular consequence of the rearrangements, thus contributing to lymphomagenesis.  (+info)