Experimental assessment of proximal stent-graft (InterVascular) fixation in human cadaveric infrarenal aortas. (1/1852)

OBJECTIVES: This paper investigates the radial deformation load of an aortic endoluminal prosthesis and determines the longitudinal load required to cause migration in a human cadaveric aorta of the endoprosthesis. DESIGN AND METHODS: The endovascular prosthesis under investigation was a 24 mm diameter, nitinol, self-expanding aortoaortic device (InterVascular, Clearwater, Florida, U.S.A.). Initially, a motorised digital force gauge developed an incremental load which was applied to the ends of five stent-grafts, to a maximum of 10 mm (42%) compression. Secondly, using a simple bench model, each ends of four stent-grafts were deployed into 10 cadaveric experimental aneurysm necks and a longitudinal load applied to effect distraction. RESULTS: Increasing load produced increasing percentage deformation of the stent-grafts. The mean longitudinal distraction load for an aneurysm neck of 20 mm was 409 g (200-480 g), for 15 mm was 277 g (130-410 g) and for 10 mm was 218 g (130-340 g). The aneurysm diameter and aortic calcification had p values of 0.002 and 0.047, respectively, while the p value for aneurysm neck length was less than 0.00001. CONCLUSIONS: These results suggest that there is a theoretical advantage of oversizing an aortic prosthesis and that sufficient anchorage is achieved in an aortic neck of 10 mm to prevent migration when fully deployed.  (+info)

Particle-mediated gene transfer of PDGF isoforms promotes wound repair. (2/1852)

Several techniques for cutaneous gene transfer have been investigated for either in vitro or in vivo applications. In the present study, we investigated whether the direct delivery of platelet-derived growth factor cDNA into skin results in improvement in tissue repair. Cutaneous transfections were carried out in rats using a particle-bombardment device (Accell). As revealed by reverse transcriptase-polymerase chain reaction, transgene expression in vivo was transient, with low level expression by day 5. When compared with wounds transfected with a control cytomegalovirus-luciferase plasmid, wounds transfected with platelet-derived growth factor A or B in the MFG vector showed a significant increase in wound tensile strength 7 and 14 d after transfection. At both time points platelet-derived growth factor A transfected wounds exhibited the highest increase in tensile strength over controls, resulting in a 3.5-fold increase at day 7 and a 1.5-fold increase at day 14. The degree of stimulation was not remarkably different between wounds transfected with platelet-derived growth factor B, which is predominantly cell associated, or a truncation mutant, platelet-derived growth factor B211, which is predominantly secreted. These findings demonstrate that in vivo gene transfer by particle bombardment can be used to improve the tissue repair response. This approach provides a robust tool to assess the biologic activity of various proteins and will aid in the development of therapeutic cutaneous gene delivery.  (+info)

Coating titanium implants with bioglass and with hydroxyapatite. A comparative study in sheep. (3/1852)

This study compares the osteointegration of titanium implants coated with bioglass (Biovetro GSB formula) and with hydroxyapatite (HAP). Twenty-four bioglass-coated and 24 HAP-coated cylinders were implanted in the femoral diaphyses of sheep, and examined after 2, 4, 6, 8, 12, and 16 weeks. The HAP coating gave a stronger and earlier fixation to the bone than did bioglass. Bioglass formed a tissue interface which showed a macrophage reaction with little new bone formation activity. In contrast, HPA, showed intense new bone formation, with highly mineralised osseous trabeculae in the neighbourhood of the interface.  (+info)

In vitro comparison of the retention capacity of new aesthetic brackets. (4/1852)

Tensile bond strength and bond failure location were evaluated in vitro for two types of aesthetic brackets (non-silanated ceramic, polycarbonate) and one stainless steel bracket, using bovine teeth as the substrate and diacrylate resin as the adhesive. The results show that metallic bracket had the highest bond strength (13.21 N) followed by the new plastic bracket (12.01 N), which does not require the use of a primer. The non-silanated ceramic bracket produced the lowest bond strength (8.88 N). Bond failures occurred mainly between bracket and cement, although a small percentage occurred between the enamel-cement interface with the metal and plastic brackets and within the cement for the plastic bracket. With the ceramic bracket all the failures occurred at the bracket-cement interface. This suggests that the problems of enamel lesions produced by this type of bracket may have been eliminated. The results also show that the enamel/adhesive bond is stronger than the adhesive/bracket bond in this in vitro study.  (+info)

The crystal growth technique--a laboratory evaluation of bond strengths. (5/1852)

An ex vivo study was carried out to determine differences in the bond strengths achieved with brackets placed using a crystal growth technique compared with a conventional acid-etch technique. A solution of 37 per cent phosphoric acid was used for acid-etching and a commercially available polyacrylic acid gel, Crystal-lok for crystal growth. A heavily-filled composite resin was used for all samples to bond brackets to healthy premolar teeth extracted for orthodontic purposes. Polycrystalline ceramic and stainless steel brackets were used and tested to both tensile and shear failure using an Instron Universal Testing machine. The tensile and shear bond strengths were recorded in kgF. In view of difficulties experienced with previous authors using different units to describe their findings, the data were subsequently converted to a range of units in order to facilitate direct comparison. The crystal growth technique produced significantly lower bond strengths than the acid-etch technique for ceramic and stainless steel brackets, both in tensile and shear mode. The tensile bond strength for stainless steel brackets with crystal growth was 2.2 kg compared with 6.01 kg for acid-etch, whilst with ceramic brackets the tensile bond strengths were 3.9 kg for crystal growth and 5.55 kg for acid-etch. The mean shear bond strength for stainless steel brackets with crystal growth was 12.61 kg compared with 21.55 kg for acid-etch, whilst with ceramic brackets the shear bond strengths were 7.93 kg with crystal growth compared with 16.55 kg for acid-tech. These bond strengths were below those previously suggested as clinically acceptable.  (+info)

The role of radial elastic properties in the development of aortic dissections. (6/1852)

PURPOSE: The response of the upper and lower thoracic aorta to radial tensile stresses was compared with the response to circumferential and longitudinal stresses to understand the role of tensile stress in the tearing phase of an aortic dissection. METHODS: Square tissue samples (1.6 by 1.6 cm) were cut from the upper and lower segments of six porcine thoracic aortas and were elongated in the radial direction with a tensile testing machine. The radial extensibility of the thoracic aorta was compared with adjacent tissue samples that were tested in tension in the circumferential and longitudinal directions based on Young's modulus (ie, the ratio of tensile stress to strain). RESULTS: The elastic properties of the thoracic aorta in the radial direction were markedly different from both the circumferential and longitudinal properties. The average Young's modulus (calculated immediately before failing) was significantly lower in the radial direction for both the upper and lower thoracic segments (61.4 +/- 4.3 kPa, SEM) than the Young's modulus of corresponding segments in the circumferential and longitudinal directions that were not tested to failure (151.1 +/- 8.6 kPa and 112.7 +/- 9.2 kPa, respectively; P <. 05). Sections 7 micrometer thick were collected from four samples obtained from one upper thoracic aorta that were strained at 0, 1.0, 2.5, and 4.0 and then stained either with Movat's pentachrome or with hematoxylin and eosin. Histological analysis of the samples stressed in the radial direction revealed that smooth muscle cells were torn loose from their attachments to each other and to adjacent elastin. CONCLUSION: Although the aorta normally functions under radial compressive stresses associated with lumen blood pressure, these results show that the aorta tears radially at a much lower value of stress than would have been predicted from previous studies that have reported longitudinal and circumferential Young's modulus. This could explain why dissections propagate readily once the initial tear occurs.  (+info)

Development of calcium phosphate cement for rapid crystallization to apatite. (7/1852)

The purpose of this study was to develop an alpha-tricalcium phosphate (alpha-TCP) cement which transforms to hydroxyapatite (HAP) in a relatively short period. We used calcium and phosphate solutions as the liquid phase for the alpha-TCP cement. The alpha-TCP powder was first mixed with CaCl2 solution, and then mixed with NaH2PO4 or Na2HPO3 solution for a total powder/liquid ratio of 1.8. The setting time became shorter with the increase in the concentration of calcium and phosphate solutions, reaching 5 min, whereas the setting time was longer than 30 min when distilled water was used as the liquid phase. X-ray diffraction analysis revealed that the cement was mostly transformed to HAP within 24 h when kept in an incubator. We concluded that alpha-TCP should be mixed with calcium and phosphate solutions since this results in a moderate setting time and fast transformation to HAP even if the method of mixing becomes a little complex.  (+info)

Steric effects of N-acyl group in O-methacryloyl-N-acyl tyrosines on the adhesiveness of unetched human dentin. (8/1852)

We have prepared various O-methacryloyl-N-acyl tyrosines (MAATY) to reveal the relationship between molecular structure near carboxylic acid and adhesive strength of MAATY-HEMA type adhesive resin to unetched dentin. In this study, we attempted to change the steric hindrance effect without changing the HLB value, i.e., introducing an iso-acyl group instead of n-acyl group into MAATY. O-methacryloyl-N-ethylbutyryl tyrosine (MIHTY) showed significantly lower adhesive strength when compared with O-methacryloyl-N-hexanoyl tyrosine even though both MAATY have the same HLB value. The possible explanation of the significantly different adhesive strength was that the 2-ethylbutyryl group in MIHTY was bulky, resulting in inhibition of the hydrogen bonding of the carboxylic group. The HLB value is independent of the steric effect of molecular structure, and thus the steric factor should be taken into consideration for the explanation of different adhesive strengths within the adhesive monomers having the same HLB value but different molecular structures.  (+info)