137Cs soil-to-plant transfer for individual species in a semi-natural grassland. Influence of potassium soil content. (9/48)

In the present study we assessed the radiocaesium uptake by plants in order to piece together information on factors affecting the uptake processes, particularly K supply and plant species differences. Vegetation uptake from soil contaminated by the Chernobyl accident was compared at two semi-natural grasslands. The Cs/K discrimination factor (DF), which is often used to evaluate a plant's efficiency in absorbing nutrients from soil, was estimated. The obtained DF values (0.01 to 0.8) vary with K soil concentrations and plant species, indicating that the (40)K is more efficiently absorbed than (137)Cs. The soil-to-plant relationship was evaluated by means of the transfer factor (TF). The (137)Cs TF(sp) values obtained from separated plant species varied within the range of 0.016 to 0.400 (site 1) and 0.017 to 0.171 (site 2). When mixed grass samples were considered a large variation was observed, mainly for site 1. The (137)Cs TF(mix) ranges were: 0.018 to 0.250 for site 1 and 0.017 to 0.167 for site 2. These values fall within the range of TFs commonly reported (0.0001-1). Our present data suggest that these pastures are apt for forage use. Different plant species presented different individual behavior regarding their (137)Cs TF(sp) when the (40)K soil activity concentration was taken in account. For most of the species analyzed, we observed a gradual decrease in the individual (137)Cs TF(sp) when the (40)K soil activity concentration was increased, with the exception of Taraxacum officinale at one of the sampling sites.  (+info)

Comparison of the efficacy of biodegradable and non-biodegradable scintillation liquids on the counting of tritium- and [14C]-labeled compounds. (10/48)

The widespread use of H and 14C in research has generated a large volume of waste mixed with scintillation liquid, requiring an effective control and appropriate storage of liquid radioactive waste. In the present study, we compared the efficacy of three commercially available scintillation liquids, Optiphase HiSafe 3, Ultima-Gold AB (biodegradable) and Insta-Gel-XF (non-biodegradable), in terms of [14C]-glucose and [ H]-thymidine counting efficiency. We also analyzed the effect of the relative amount of water (1.6 to 50%), radioisotope concentration (0.1 to 100 nCi/ml), pH (2 to 10) and color of the solutions (samples containing 0.1 to 1.0 mg/ml of Trypan blue) on the counting efficiency in the presence of these scintillation liquids. There were few significant differences in the efficiency of 14C and H counting obtained with biodegradable or non-biodegradable scintillation liquids. However, there was an 83 and 94% reduction in the efficiency of 14C and H counting, respectively, in samples colored with 1 mg/ml Trypan blue, but not with 0.1 mg/ml, independent of the scintillation liquid used. Considering the low cost of biodegradable scintillation cocktails and their efficacy, these results show that traditional hazardous scintillation fluids may be replaced with the new safe biodegradable fluids without impairment of H and 14C counting efficiency. The use of biodegradable scintillation cocktails minimizes both human and environmental exposure to hazardous solvents. In addition, some biodegradable scintillation liquids can be 40% less expensive than the traditional hazardous cocktails.  (+info)

Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, washington state. (11/48)

Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the potential fate and migration of contaminants in the subsurface. The plume originated from a leak that occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI), (137)Cs, and (99)Tc. Investigations were initiated to determine the distribution of viable microorganisms in the vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic heterotrophic bacteria were generally low, from below detection to approximately 10(4) CFU g(-1), but viable microorganisms were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 microCi of (137)Cs/g). The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthrobacter species were the most common isolates among all samples, but other phyla high in G+C content were also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample (>20 microCi of (137)Cs g(-1)) were closely related to Deinococcus radiodurans and were able to survive acute doses of ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in G+C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme physical and chemical stress associated with radioactive waste.  (+info)

Accelerated biodegradation of cement by sulfur-oxidizing bacteria as a bioassay for evaluating immobilization of low-level radioactive waste. (12/48)

Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca(2+) and Si(2+), the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr(2+) and Cs(+), which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement.  (+info)

On the possible leakage of ET-RR1 liquid waste tank: hydrological and migration modes studies. (13/48)

The first Egyptian (ET-RR1) research reactor has been in operation since 1961 at the Egyptian Atomic Energy Authority (EAEA) Inshas site. Therefore, at present, it faces a serious problem due to aging equipment, especially those directly in contact with the environment such as the underground settling tanks of nuclear and radioactive waste. The possible leakage of radionuclides from these aging tanks and their migration to the aquifer was studied using instantaneous release. This study was done based on the geological and hydrological characteristics of the site, which were obtained from the hydrogeological data of 25 wells previously drilled at the site of the reactor[1]. These data were used to calculate the trend of water levels, hydraulic gradient, and formulation of water table maps from 1993-2002. This information was utilized to determine water velocity in the unsaturated zone. Radionuclides released from the settling tank to the aquifer were screened according to the radionuclides that have high migration ability and high activity. The amount of fission and activation products of the burned fuels that contaminated the water content of the reactor pool were considered as 10% of the original spent fuel. The radionuclides considered in this case were H-3, Sr-90, Zr-93, Tc-99, Cd-113, Cs-135, Cs-137, Sm-151, Pu-238, Pu-240, Pu-241, and Am-241. The instantaneous release was analyzed by theoretical calculations, taking into consideration the migration mechanism of the various radionuclides through the soil space between the tank bottom and the aquifer. The migration mechanism through the unsaturated zone was considered depending on soil type, thickness of the unsaturated zone, water velocity, and other factors that are specific for each radionuclide, namely retardation factor, which is the function of the specific distribution coefficient of each radionuclide. This was considered collectively as delay time. Meanwhile, the mechanism of radionuclide migration during their passage in the water body of the aquifer was the main focus of this study. The degree of water pollution in the aquifer at a point of contact with the main water body of Ismailia Canal 1000 m from the reactor site was assessed for the instantaneous release by comparing the results obtained with the regulations of the standard limit of radionuclides in drinking water.  (+info)

Improper disposal of hazardous substances and resulting injuries--selected States, January 2001-March 2005. (14/48)

Many consumer and industrial products, including fuels, solvents, fertilizers, pesticides, paints, and household cleaning disinfectants, contain hazardous substances. Improper disposal of these materials can lead to unexpected releases of toxins that are hazardous to humans and harmful to the environment. This report summarizes all known events involving improper disposal of hazardous substances reported to the Agency for Toxic Substances and Disease Registry (ATSDR) during January 2001-March 2005, describes four illustrative case reports, and provides recommendations for preventing injury resulting from improper disposal.  (+info)

Practical aspects of peptide receptor radionuclide therapy with [177Lu][DOTA0, Tyr3]octreotate. (15/48)

Lutetium-177 is increasingly used in patients for receptor-targeted radionuclide therapy with peptides such as [DOTA0,Tyr3]octreotate. In our therapy facility, we are performing yearly 400 treatments with each 7.4 GBq [177Lu][DOTA0,Tyr3]octreotate. Finger dosimetry data during radiolabeling reveal higher doses on the right hands of right-handed workers with the highest equivalent dose for the middle finger (53+/-12 microSv/GBq). Extrapolating dosimetry data, assuming 400 doses of 7.4 GBq per year performed by 4 workers, result in a mean equivalent dose of 23+/-11 mSv and 14+/-6 mSv for finger top and ring dose, respectively. Preparation of 400 doses will result in an effective dose of 0.5-1.5 mSv per year for these 4 workers. The extra radiation dose for workers during the radiolabeling of these doses thus remains below 10% of the legal annual limits, which is in accordance with the ALARA optimization principle. Based on measurements of the maximal radiation level at 1 m distance (7.5+/-3.6 microSv/h), patients treated with 7.4 GBq [177Lu][DOTA0,Tyr3]octreotate can already leave the therapy facility the next day. As radioactive waste streams are based on the half-lives of the used radionuclides, 177Lu-waste (t1/2=6.7 d) was initially collected along with the 131I-waste (t1/2=8 d). According to both manufacturers' specifications, 177Lu contains less than 0.4 kBq 177mLu/MBq 177Lu (at the end of neutron irradiation), when produced by the [176Lu n, gamma 177Lu] reaction via thermal neutron bombardment of enriched lutetium oxide. Unfortunately, because of the huge amounts of 177Lu used, contaminating 177mLu turned out to prevent the quick discharge of this waste, for some containers even after some years of storage. Therefore, a technique for calibrating 177mLu was developed, simultaneously confirming the manufacturer's specifications on the presence of 177mLu in 177Lu. Subsequently a reliable technique was developed to measure 177mLu in waste containers using a beta/gamma-contamination monitor. It is advised to collect 177mLu/177Lu-waste and certainly high-activity lutetium waste separated from 131I according the regulations in the country of use. Apart from the mentioned waste, excreta from patients are collected in decay tanks, where they are stored for 1-2 months before they are discarded into the general sewer within the overall tolerated discharge limit (150 radiotoxicity equivalents/year for our department).  (+info)

Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. (16/48)

Genetic engineering of radiation-resistant organisms to recover radionuclides/heavy metals from radioactive wastes is an attractive proposition. We have constructed a Deinococcus radiodurans strain harboring phoN, a gene encoding a nonspecific acid phosphatase, obtained from a local isolate of Salmonella enterica serovar Typhi. The recombinant strain expressed an approximately 27-kDa active PhoN protein and efficiently precipitated over 90% of the uranium from a 0.8 mM uranyl nitrate solution in 6 h. The engineered strain retained uranium bioprecipitation ability even after exposure to 6 kGy of 60Co gamma rays. The PhoN-expressing D. radiodurans offers an effective and eco-friendly in situ approach to biorecovery of uranium from dilute nuclear waste.  (+info)