Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. (49/2256)

We have characterized the role of salicylic acid (SA)-independent defense signaling in Arabidopsis thaliana in response to the plant pathogen Erwinia carotovora subsp. carotovora. Use of pathway-specific target genes as well as signal mutants allowed us to elucidate the role and interactions of ethylene, jasmonic acid (JA), and SA signal pathways in this response. Gene expression studies suggest a central role for both ethylene and JA pathways in the regulation of defense gene expression triggered by the pathogen or by plant cell wall-degrading enzymes (CF) secreted by the pathogen. Our results suggest that ethylene and JA act in concert in this regulation. In addition, CF triggers another, strictly JA-mediated response inhibited by ethylene and SA. SA does not appear to have a major role in activating defense gene expression in response to CF. However, SA may have a dual role in controlling CF-induced gene expression, by enhancing the expression of genes synergistically induced by ethylene and JA and repressing genes induced by JA alone.  (+info)

Role of hormones in the induction of iron deficiency responses in Arabidopsis roots. (50/2256)

In "strategy I" plants, several alterations in root physiology and morphology are induced by Fe deficiency, although the mechanisms by which low Fe levels are translated into reactions aimed at alleviating Fe shortage are largely unknown. To prove whether changes in hormone concentration or sensitivity are involved in the adaptation to suboptimal Fe availability, we tested 45 mutants of Arabidopsis defective in hormone metabolism and/or root hair formation for their ability to increase Fe(III) chelate reductase activity and to initiate the formation and enlargement of root hairs. Activity staining for ferric chelate reductase revealed that all mutants were responsive to Fe deficiency, suggesting that hormones are not necessary for the induction. Treatment of wild-type plants with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid caused the development of root hairs in locations normally occupied by non-hair cells, but did not stimulate ferric reductase activity. Ectopic root hairs were also formed in -Fe roots, suggesting a role for ethylene in the morphological responses to Fe deficiency. Ultrastructural analysis of rhizodermal cells indicated that neither Fe deficiency nor 1-aminocyclopropane-1-carboxylic acid treatment caused transfer-cell-like alterations in Arabidopsis roots. Our data indicate that the morphological and physiological components of the Fe stress syndrome are regulated separately.  (+info)

The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family. (51/2256)

The plant hormone ethylene is involved in many developmental processes, including fruit ripening, abscission, senescence, and leaf epinasty. Tomato contains a family of ethylene receptors, designated LeETR1, LeETR2, NR, LeETR4, and LeETR5, with homology to the Arabidopsis ETR1 ethylene receptor. Transgenic plants with reduced LeETR4 gene expression display multiple symptoms of extreme ethylene sensitivity, including severe epinasty, enhanced flower senescence, and accelerated fruit ripening. Therefore, LeETR4 is a negative regulator of ethylene responses. Reduced expression of this single gene affects multiple developmental processes in tomato, whereas in Arabidopsis multiple ethylene receptors must be inactivated to increase ethylene response. Transgenic lines with reduced NR mRNA levels exhibit normal ethylene sensitivity but elevated levels of LeETR4 mRNA, indicating a functional compensation of LeETR4 for reduced NR expression. Overexpression of NR in lines with lowered LeETR4 gene expression eliminates the ethylene-sensitive phenotype, indicating that despite marked differences in structure these ethylene receptors are functionally redundant.  (+info)

120- and 160-kDa receptors for endogenous mitogenic peptide, phytosulfokine-alpha, in rice plasma membranes. (52/2256)

Plant cells in culture secrete a sulfated peptide named phytosulfokine-alpha (PSK-alpha), and this peptide induces the cell division and/or cell differentiation by means of specific high and low affinity receptors. Putative receptor proteins for this autocrine type growth factor were identified by photoaffinity labeling of plasma membrane fractions derived from rice suspension cells. Incubation of membranes with a photoactivable (125)I-labeled PSK-alpha analog, [N(epsilon)-(4-azidosalicyl)Lys(5)]PSK-alpha (AS-PSK-alpha), followed by UV irradiation resulted in specific labeling of 120- and 160-kDa bands in SDS-polyacrylamide gel electrophoresis. The labeling of both bands was completely inhibited by unlabeled PSK-alpha and partially decreased by PSK-alpha analogs possessing moderate binding activities. In contrast, PSK-alpha analogs that have no biological activity showed no competition for (125)I-AS-PSK-alpha binding, confirming the specificity of binding proteins. Analysis of the affinity of (125)I incorporation into the protein by ligand saturation experiments gave apparent K(d) values of 5.0 nm for the 120-kDa band and 5.4 nm for the 160-kDa band, suggesting that both proteins correspond to the high affinity binding site. Treatment of (125)I-AS-PSK-alpha cross-linked proteins with peptide N-glycosidase F demonstrated that both proteins contained approximately 10 kDa of N-linked oligosaccharides. Specific cross-linking of (125)I-AS-PSK-alpha was also observed by using plasma membranes derived from carrot and tobacco cells, indicating the widespread occurrence of the binding proteins. Together, these data suggest that the 120- and 160-kDa proteins are PSK-alpha receptors that mediate the biological activities of PSK-alpha.  (+info)

Teasterone-3-O-beta-D-glucopyranoside, a new conjugated brassinosteroid metabolite from lily cell suspension cultures and its identification in lily anthers. (53/2256)

The new brassinosteroid conjugate, teasterone-3-O-betaD-glucopyranoside, was found as a metabolite of teasterone in lily cell suspension cultures. Its structure was determined by means of FAB-MS and 1H-NMR upon comparison with the authentic compound. Furthermore, its presence in lily anthers was confirmed by FAB-MS and LC-APCI-SIM data. This is the first natural brassinosteroid conjugate glucosylated at a hydroxyl group in ring A.  (+info)

Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-type cyclin gene expression. (54/2256)

In most plants, sucrose is the major transported carbon source. Carbon source availability in the form of sucrose is likely to be a major determinant of cell division, and mechanisms must exist for sensing sugar levels and mediating appropriate control of the cell cycle. We show that sugar availability plays a major role during the G(1) phase by controlling the expression of CycD cyclins in Arabidopsis. CycD2 mRNA levels increase within 30 min of the addition of sucrose; CycD3 is induced after 4 h. This corresponds to induction of CycD2 expression early in G(1) and CycD3 expression in late G(1) near the S-phase boundary. CycD2 and CycD3 induction is independent both of progression to a specific point in the cell cycle and of protein synthesis. Protein kinase activity of CycD2- and CycD3-containing cyclin-dependent kinases is consistent with the observed regulation of their mRNA levels. CycD2 and CycD3 therefore act as direct mediators of the presence of sugar in cell cycle commitment. CycD3, but not CycD2, expression responds to hormones, for which we show that the presence of sugars is required. Finally, protein phosphatases are shown to be involved in regulating CycD2 and CycD3 induction. We propose that control of CycD2 and CycD3 by sucrose forms part of cell cycle control in response to cellular carbohydrate status.  (+info)

Ozone sensitivity in hybrid poplar correlates with insensitivity to both salicylic acid and jasmonic acid. The role of programmed cell death in lesion formation. (55/2256)

Our earlier studies demonstrated that the ozone-sensitive hybrid poplar clone NE-388 displays an attenuated level of ozone-, wound-, and phytopathogen-induced defense gene expression. To determine if this reduced gene activation involves signal transduction pathways dependent on salicylic acid (SA) and/or jasmonic acid (JA), we compared the responses of NE-388 and an ozone-tolerant clone, NE-245, to these signal molecules. JA levels increased in both clones in response to ozone, but only minimal increases in SA levels were measured for either clone. Treatment with SA and methyl jasmonate induced defense gene expression only in NE-245, indicating that NE-388 is insensitive to these signal molecules. DNA fragmentation, an indicator of programmed cell death (PCD), was detected in NE-245 treated with either ozone or an avirulent phytopathogen, but was not detected in NE-388. We conclude that these clones undergo two distinct mechanisms of ozone-induced lesion formation. In NE-388, lesions appear to be due to toxic cell death resulting from a limited ability to perceive and subsequently activate SA- and/or JA-mediated antioxidant defense responses. In NE-245, SA-dependent PCD precedes lesion formation via a process related to the PCD pathway activated by phytopathogenic bacteria. These results support the hypothesis that ozone triggers a hypersensitive response.  (+info)

Syntheses of (+/-)-methyl 6'alpha-demethyl-6'alpha-cyanoabscisate and (+/-)-methyl 6'alpha-demethyl-6'alpha-methoxycarbonylabscisate. (56/2256)

New abscisic acid analogs possessing a cyano or methoxycarbonyl group at the 6'alpha-position of methyl abscisate were synthesized by regioselective hydrocyanation. These compounds had weak activity in the rice second leaf sheath elongation test.  (+info)