Vps10p transport from the trans-Golgi network to the endosome is mediated by clathrin-coated vesicles. (17/690)

A native immunoisolation procedure has been used to investigate the role of clathrin-coated vesicles (CCVs) in the transport of vacuolar proteins between the trans-Golgi network (TGN) and the prevacuolar/endosome compartments in the yeast Saccharomyces cerevisiae. We find that Apl2p, one large subunit of the adaptor protein-1 complex, and Vps10p, the carboxypeptidase Y vacuolar protein receptor, are associated with clathrin molecules. Vps10p packaging in CCVs is reduced in pep12 Delta and vps34 Delta, two mutants that block Vps10p transport from the TGN to the endosome. However, Vps10p sorting is independent of Apl2p. Interestingly, a Vps10C(t) Delta p mutant lacking its C-terminal cytoplasmic domain, the portion of the receptor responsible for carboxypeptidase Y sorting, is also coimmunoprecipitated with clathrin. Our results suggest that CCVs mediate Vps10p transport from the TGN to the endosome independent of direct interactions between Vps10p and clathrin coats. The Vps10p C-terminal domain appears to play a principal role in retrieval of Vps10p from the prevacuolar compartment rather than in sorting from the TGN.  (+info)

A novel clathrin homolog that co-distributes with cytoskeletal components functions in the trans-Golgi network. (18/690)

A clathrin homolog encoded on human chromosome 22 (CHC22) displays distinct biochemistry, distribution and function compared with conventional clathrin heavy chain (CHC17), encoded on chromosome 17. CHC22 protein is upregulated during myoblast differentiation into myotubes and is expressed at high levels in muscle and at low levels in non-muscle cells, relative to CHC17. The trimeric CHC22 protein does not interact with clathrin heavy chain subunits nor bind significantly to clathrin light chains. CHC22 associates with the AP1 and AP3 adaptor complexes but not with AP2. In non-muscle cells, CHC22 localizes to perinuclear vesicular structures, the majority of which are not clathrin coated. Treatments that disrupt the actin-myosin cytoskeleton or affect sorting in the trans-Golgi network (TGN) cause CHC22 redistribution. Overexpression of a subdomain of CHC22 induces altered distribution of TGN markers. Together these results implicate CHC22 in TGN membrane traffic involving the cytoskeleton.  (+info)

Trafficking of phosphatidylinositol 3-phosphate from the trans-Golgi network to the lumen of the central vacuole in plant cells. (19/690)

Very limited information is available on the role of phosphatidylinositol 3-phosphate (PI[3]P) in vesicle trafficking in plant cells. To investigate the role of PI(3)P during the vesicle trafficking in plant cells, we exploited the PI(3)P-specific binding property of the endosome binding domain (EBD) (amino acids 1257 to 1411) of human early endosome antigen 1, which is involved in endosome fusion. When expressed transiently in Arabidopsis protoplasts, a green fluorescent protein (GFP):EBD fusion protein exhibited PI(3)P-dependent localization to various compartments--such as the trans-Golgi network, the prevacuolar compartment, the tonoplasts, and the vesicles in the vacuolar lumen--that varied with time. The internalized GFP:EBD eventually disappeared from the lumen. Deletion experiments revealed that the PI(3)P-dependent localization required the Rab5 binding motif in addition to the zinc finger motif. Overexpression of GFP:EBD inhibited vacuolar trafficking of sporamin but not trafficking of H(+)-ATPase to the plasma membrane. On the basis of these results, we propose that the trafficking of GFP:EBD reflects that of PI(3)P and that PI(3)P synthesized at the trans-Golgi network is transported to the vacuole through the prevacuolar compartment for degradation in plant cells.  (+info)

Illuminating the secretory pathway: when do we need vesicles? (20/690)

Recent studies using GFP-tagged markers and time-lapse microscopy have allowed direct visualisation of membrane traffic in the secretory pathway in living mammalian cells. This work shows that larger membrane structures, 300-500 nm in size, are the vehicles responsible for long distance, microtubule-dependent ER-to-Golgi and trans-Golgi to plasma membrane transport of secretory markers. At least two retrograde transport pathways from the Golgi to the ER exist, both of which are proposed to involve a further class of long, tubular membrane carrier that forms from the Golgi and fuses with the ER. Together, this has challenged established transport models, raising the question of whether larger pleiomorphic structures, rather than small 60-80 nm transport vesicles, mediate long-range transport between the ER and Golgi and between the Golgi and plasma membrane.  (+info)

Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. (21/690)

When a kinase inactive form of Protein Kinase D (PKD-K618N) was expressed in HeLa cells, it localized to the trans-Golgi network (TGN) and caused extensive tubulation. Cargo that was destined for the plasma membrane was found in PKD-K618N-containing tubes but the tubes did not detach from the TGN. As a result, the transfer of cargo from TGN to the plasma membrane was inhibited. We have also demonstrated the formation and subsequent detachment of cargo-containing tubes from the TGN in cells stably expressing low levels of PKD-K618N. Our results suggest that PKD regulates the fission from the TGN of transport carriers that are en route to the cell surface.  (+info)

The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. (22/690)

Phosphoinositides play key regulatory roles in vesicular transport pathways in eukaryotic cells. Clathrin-mediated membrane trafficking has been shown to require phosphoinositides, but little is known about the enzyme(s) responsible for their formation. Here we report that clathrin functions as an adaptor for the class II PI 3-kinase C2alpha (PI3K-C2alpha), binding to its N-terminal region and stimulating its catalytic activity, especially toward phosphorylated inositide substrates. Further, we show that endogenous PI3K-C2alpha is localized in coated pits and that exogenous expression affects clathrin-mediated endocytosis and sorting in the trans-Golgi network. These findings provide a mechanistic basis for localized inositide generation at sites of clathrin-coated bud formation, which, with recruitment of inositide binding proteins and subsequent synaptojanin-mediated phosphoinositide hydrolysis, may regulate coated vesicle formation and uncoating.  (+info)

An acidic motif retains vesicular monoamine transporter 2 on large dense core vesicles. (23/690)

The release of biogenic amines from large dense core vesicles (LDCVs) depends on localization of the vesicular monoamine transporter VMAT2 to LDCVs. We now find that a cluster of acidic residues including two serines phosphorylated by casein kinase 2 is required for the localization of VMAT2 to LDCVs. Deletion of the acidic cluster promotes the removal of VMAT2 from LDCVs during their maturation. The motif thus acts as a signal for retention on LDCVs. In addition, replacement of the serines by glutamate to mimic phosphorylation promotes the removal of VMAT2 from LDCVs, whereas replacement by alanine to prevent phosphorylation decreases removal. Phosphorylation of the acidic cluster thus appears to reduce the localization of VMAT2 to LDCVs by inactivating a retention mechanism.  (+info)

Egress of alphaherpesviruses: comparative ultrastructural study. (24/690)

Egress of four important alphaherpesviruses, equine herpesvirus 1 (EHV-1), herpes simplex virus type 1 (HSV-1), infectious laryngotracheitis virus (ILTV), and pseudorabies virus (PrV), was investigated by electron microscopy of infected cell lines of different origins. In all virus-cell systems analyzed, similar observations were made concerning the different stages of virion morphogenesis. After intranuclear assembly, nucleocapsids bud at the inner leaflet of the nuclear membrane, resulting in enveloped particles in the perinuclear space that contain a sharply bordered rim of tegument and a smooth envelope surface. Egress from the perinuclear cisterna primarily occurs by fusion of the primary envelope with the outer leaflet of the nuclear membrane, which has been visualized for HSV-1 and EHV-1 for the first time. The resulting intracytoplasmic naked nucleocapsids are enveloped at membranes of the trans-Golgi network (TGN), as shown by immunogold labeling with a TGN-specific antiserum. Virions containing their final envelope differ in morphology from particles within the perinuclear cisterna by visible surface projections and a diffuse tegument. Particularly striking was the addition of a large amount of tegument material to ILTV capsids in the cytoplasm. Extracellular virions were morphologically identical to virions within Golgi-derived vesicles, but distinct from virions in the perinuclear space. Studies with gB- and gH-deleted PrV mutants indicated that these two glycoproteins, which are essential for virus entry and direct cell-to-cell spread, are dispensable for egress. Taken together, our studies indicate that the deenvelopment-reenvelopment process of herpesvirus maturation also occurs in EHV-1, HSV-1, and ILTV and that membrane fusion processes occurring during egress are substantially different from those during entry and direct viral cell-to-cell spread.  (+info)