Obesity induces expression of uncoupling protein-2 in hepatocytes and promotes liver ATP depletion. (1/1423)

Uncoupling protein 2 (UCP2) uncouples respiration from oxidative phosphorylation and may contribute to obesity through effects on energy metabolism. Because basal metabolic rate is decreased in obesity, UCP2 expression is predicted to be reduced. Paradoxically, hepatic expression of UCP2 mRNA is increased in genetically obese (ob/ob) mice. In situ hybridization and immunohistochemical analysis of ob/ob livers demonstrate that UCP2 mRNA and protein expression are increased in hepatocytes, which do not express UCP2 in lean mice. Mitochondria isolated from ob/ob livers exhibit an increased rate of H+ leak which partially dissipates the mitochondrial membrane potential when the rate of electron transport is suppressed. In addition, hepatic ATP stores are reduced and these livers are more vulnerable to necrosis after transient hepatic ischemia. Hence, hepatocytes adapt to obesity by up-regulating UCP2. However, because this decreases the efficiency of energy trapping, the cells become vulnerable to ATP depletion when energy needs increase acutely.  (+info)

Metabolic regulation, activity state, and intracellular binding of glucokinase in insulin-secreting cells. (2/1423)

Regulation of glucose-induced insulin secretion is crucially dependent on glucokinase function in pancreatic beta-cells. Glucokinase mRNA expression was metabolically regulated allowing continuous translation into enzyme protein. Glucokinase enzyme activity in the beta-cell was exclusively regulated by glucose. Using a selective permeabilization technique, different intracellular activity states of the glucokinase enzyme in bioengineered glucokinase-overexpressing RINm5F tissue culture cells were observed. These results could be confirmed in analogous experiments with dispersed islet cells. A diffusible glucokinase fraction with high enzyme activity could be distinguished from an intracellularly bound fraction with low activity. Glucose induced a significant long-term increase of the active glucokinase fraction. This effect was accomplished through the release of glucokinase enzyme protein from an intracellular binding site of protein character. The inhibitory function of this protein factor was abolished through proteolytic digestion or heat inactivation. Northern blot analyses revealed that this binding protein was not identical to the well-known liver glucokinase regulatory protein. This hitherto unknown new protein factor may have the function of a glucokinase regulatory protein in the pancreatic beta-cell, which may regulate glucokinase enzyme activity in a glucose-dependent manner.  (+info)

Molecular cloning of a pancreatic islet-specific glucose-6-phosphatase catalytic subunit-related protein. (3/1423)

A pancreatic islet-specific glucose-6-phosphatase-related protein (IGRP) was cloned using a subtractive cDNA expression cloning procedure from mouse insulinoma tissue. Two alternatively spliced variants that differed by the presence or absence of a 118-bp exon (exon IV) were detected in normal balb/c mice, diabetic ob/ob mice, and insulinoma tissue. The longer, 1901-bp full-length cDNA encoded a 355-amino acid protein (molecular weight 40,684) structurally related (50% overall identity) to the liver glucose-6-phosphatase and exhibited similar predicted transmembrane topology, conservation of catalytically important residues, and the presence of an endoplasmic reticulum retention signal. The shorter transcript encoded two possible open reading frames (ORFs), neither of which possessed His174, a residue thought to be the phosphoryl acceptor (Pan CJ, Lei KJ, Annabi B, Hemrika W, Chou JY: Transmembrane topology of glucose-6-phosphatase. J Biol Chem 273:6144-6148, 1998). Northern blot and reverse transcription-polymerase chain reaction analysis showed that the mRNA was highly expressed in pancreatic islets and expressed more in beta-cell lines than in an alpha-cell line. It was notably absent in tissues and cell lines of non-islet neuroendocrine origin, and no other major tissue source of the mRNA was found. During development, it was expressed in parallel with insulin mRNA. The mRNA was efficiently translated and glycosylated in an in vitro translation/membrane translocation system and readily transcribed into COS 1, HIT, and CHO cells using cytomegalovirus or Rous sarcoma virus promoters. Whereas the liver glucose-6-phosphatase showed activity in these transfection systems, the IGRP failed to show glucose phosphotransferase or phosphatase activity with p-nitrophenol phosphate, inorganic pyrophosphate, or a range of sugar phosphates hydrolyzed by the liver enzyme. While the metabolic function of the enzyme is not resolved, its remarkable tissue-specific expression warrants further investigation, as does its transcriptional regulation in conditions where glucose responsiveness of the pancreatic islet is altered.  (+info)

Resistance to hepatic action of vasopressin in genetically obese (ob/ob) mice. (4/1423)

1. Fatty acid synthesis, measured in the perfused liver of genetically obese (ob/ob) mice with 3H2O or [14C]actate, did not show the inhibition by [8-arginine]vasopressin (antidiuretic hormone) that is observed in livers from normal mice. 2. Hepatic glycogen breakdown in obese mice was stimuulated by vasopressin, but not as extensively as in lean mice. 3. If obese mice received a restricted amount of food, then fatty acid synthesis still did not respond to vasopressin, but glycogen breakdown was fully stimulated. 4. Cholesterol synthesis was not inhibited by vasopressin in livers from obese mice. 5. Vasopressin inhibited fatty acid synthesis in intact lean mice, but not in obese animals. 6. These results suggest that genetic obesity could be due to an inborn error within the mechanisms (other than adenylate cyclase) which mediate responses to extracellular effectors.  (+info)

Induction of uncoupling protein-2 (UCP2) gene expression on the differentiation of rat preadipocytes to adipocytes in primary culture. (5/1423)

We have examined uncoupling protein-2 (UCP2) gene expression in the adipose tissue of obese and normal rats and mice, and also in differentiated rat adipocytes in primary culture. Expression of the UCP2 gene was examined in rat and mouse adipose tissues using both RT-PCR and Northern blotting. Although the RT-PCR was not quantitative, the band corresponding to the UCP2 mRNA was stronger in white adipose tissue than in brown fat, regardless of the body weight of the rats. In agreement with the RT-PCR data, there was a higher level of UCP2 mRNA in the white adipocytes than in brown adipocytes, the level being greater in obese mice. Fibroblastic preadipocytes were obtained from the inguinal fat pad of suckling rats. Lipid droplets developed inside the cells upon differentiation and adipsin and UCP2 mRNAs were detected by Northern blotting. Both mRNAs were evident in the adipocytes at 4, 6, and 10 d after the induction of differentiation. There was no indication that the expression of UCP2 was markedly affected by the addition of leptin, dexamethasone or isoprenaline.  (+info)

The obese gene is expressed in lean littermates of the genetically obese mouse (C57BL/6J ob/ob). (6/1423)

Some individuals of the mixed group of "lean" littermates (+/ob and +/+) of (C57BL/6J ob/ob) often suggest phenotypic characteristics of ob/ob animals. Therefore, it was of interest to determine whether expression of the ob gene had physiological significance in +/ob animals. Body weight (BW), fasting blood glucose (FBG), and body core temperature (Tr) were monitored between 62 and 364 days of age in +/+ and +/ob mice. Among females but not males, +/ob mice were heavier (P = 0.003) and FBG levels were greater (P = 0.04) than in +/+ animals. Comparison of Tr indicated differences suggesting falling Tr in +/ob but rising Tr in +/+ mice with age in males but not females. Multivariate analysis of variance yielded genotype effects for both males (P = 0.002) and females (P = 0.02). BW, FBG, and Tr alone were sufficient at the 75% level for genotypic characterization and separation of +/? animals as +/ob or +/+; clearly, expression of the ob gene in heterozygotes of the +/ob animal may make the mixed +/? group inappropriate as lean controls.  (+info)

Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. (7/1423)

Insulin elicits a spectrum of biological responses by binding to its cell surface receptor. In a screen for small molecules that activate the human insulin receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was identified that acted as an insulin mimetic in several biochemical and cellular assays. The compound was selective for insulin receptor versus insulin-like growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral administration of L-783,281 to two mouse models of diabetes resulted in significant lowering in blood glucose levels. These results demonstrate the feasibility of discovering novel insulin receptor activators that may lead to new therapies for diabetes.  (+info)

Rodent mutant models of obesity and their correlations to human obesity. (8/1423)

Obesity is a heath problem affecting a significant fraction of adult Americans and is on the rise globally. It is of importance to find treatments that achieve medically significant weight loss and successful long-term maintenance of a desired weight. Recent transgenic mouse studies and genetic characterization of spontaneous rodent obesity mutants, together with gene linkage analysis in humans, have led to an increased understanding of the physiologic and molecular mechanisms underlying obesity. However, much remains to be studied in this complex field of research. In this review, we discuss the physiology and genetics underlying obesity and how studies in rodents and humans are converging, producing a greater understanding of the mechanisms underlying this health problem.  (+info)