Calorimetric studies on the stability of the ribosome-inactivating protein abrin II: effects of pH and ligand binding. (1/2195)

The effects of pH and ligand binding on the stability of abrin II, a heterodimeric ribosome-inactivating protein, and its subunits have been studied using high-sensitivity differential scanning calorimetry. At pH7.2, the calorimetric scan consists of two transitions, which correspond to the B-subunit [transition temperature (Tm) 319.2K] and the A-subunit (Tm 324.6K) of abrin II, as also confirmed by studies on the isolated A-subunit. The calorimetric enthalpy of the isolated A-subunit of abrin II is similar to that of the higher-temperature transition. However, its Tm is 2.4K lower than that of the higher-temperature peak of intact abrin II. This indicates that there is some interaction between the two subunits. Abrin II displays increased stability as the pH is decreased to 4.5. Lactose increases the Tm values as well as the enthalpies of both transitions. This effect is more pronounced at pH7.2 than at pH4.5. This suggests that ligand binding stabilizes the native conformation of abrin II. Analysis of the B-subunit transition temperature as a function of lactose concentration suggests that two lactose molecules bind to one molecule of abrin II at pH7.2. The presence of two binding sites for lactose on the abrin II molecule is also indicated by isothermal titration calorimetry. Plotting DeltaHm (the molar transition enthalpy at Tm) against Tm yielded values for DeltaCp (change in excess heat capacity) of 27+/-2 kJ.mol-1.K-1 for the B-subunit and 20+/-1 kJ.mol-1.K-1 for the A-subunit. These values have been used to calculate the thermal stability of abrin II and to surmise the mechanism of its transmembrane translocation.  (+info)

Expression and characterization of the intact N-terminal domain of streptokinase. (2/2195)

Proteolytic studies have enabled two of the three putative domains of the fibrinolytic protein streptokinase to be isolated and characterized (Conejero-Lara F et al., 1996, Protein Sci 5:2583-2591). The N-terminal domain, however, could not be isolated in these experiments because of its susceptibility to proteolytic cleavage. To complete the biophysical characterization of the domain structure of streptokinase we have overexpressed, purified, and characterized the N-terminal region of the protein, residues 1-146. The results show this is cooperatively folded with secondary structure content and overall stability closely similar to those of the equivalent region in the intact protein.  (+info)

The effects of hydrostatic pressure on ribosome conformation in Escherichia coli: and in vivo study using differential scanning calorimetry. (3/2195)

Differential scanning calorimetry of whole Escherichia coil cells allowed the detection in vivo of changes in ribosome conformation. This enabled for the first time an analysis of the effects of high hydrostatic pressures on ribosomes in living cells. A correlation was observed between loss of cell viability and decrease in ribosome-associated enthalpy in cells subjected to pressures of 50-250 MPa for 20 min. Cell death and ribosome damage were therefore closely related phenomena. In pressure-treated cells, the thermogram peak temperatures decreased, suggesting that the remaining ribosomes had adopted a less stable conformation. During subsequent incubation of the cultures at 37 degrees C, peak temperatures and enthalpies gradually increased over a period of 5 h. This change in ribosome conformation had no apparent effect on cell survival, as viability continued to decrease. The addition of 5 mM MgCl2 before pressure treatment of cells prevented the reduction in stability of surviving ribosomes but had no effect on the initial loss of enthalpy or on cell viability.  (+info)

Glycosylation of asparagine-28 of recombinant staphylokinase with high-mannose-type oligosaccharides results in a protein with highly attenuated plasminogen activator activity. (4/2195)

The properties of recombinant staphylokinase (SakSTAR) expressed in Pichia pastoris cells have been determined. The single consensus N-linked oligosaccharide linkage site in SakSTAR (at Asn28 of the mature protein) was occupied in approximately 50% of the expressed protein with high-mannose-type oligosaccharides. The majority of these glycans ranged in polymerization state from Man8GlcNAc2 to Man14GlcNAc2, with the predominant species being Man10GlcNAc2 and Man11GlcNAc2. Glycosylated SakSTAR (SakSTARg) did not differ from its aglycosyl form in its aggregation state in solution, its thermal denaturation properties, its ability to form a complex with human plasmin (hPm), the amidolytic properties of the respective SakSTAR-hPm complexes, or its ability to liberate the amino-terminal decapeptide required for formation of a functional SakSTAR-hPm plasminogen activator complex. However, this latter complex with SakSTARg showed a greatly reduced ability to activate human plasminogen (hPg) as compared with the same complex with the aglycosyl form of SakSTAR. We conclude that glycosylation at Asn28 does not affect the structural properties of SakSTAR or its ability to participate in the formation of an active enzymatic complex with hPm, but it is detrimental to the ability of the SakSTAR-hPm complex to serve as a hPg activator. This is likely due to restricted access of hPg to the active site of the SakSTARg-hPm complex.  (+info)

Hydrocarbon chain packing and the effect of ethanol on the thermotropic phase behavior of mixed-chain phosphatidylglycerols. (5/2195)

Previous studies in this laboratory have delineated the relationship between the acyl chain asymmetry of mixed-chain phosphatidylcholines and the effect of ethanol concentration ([EtOH]) on their melting behavior (Li et al., Biophys J., 70 (1996) 2784-2794). This present investigation extends these findings to another phospholipid family by using high-resolution differential scanning calorimetry (DSC) to characterize the effect of ethanol concentration on the main phase transition temperature (Tm) of five molecular species of mixed-chain phosphatidylglycerol (PG). For C(14):C(18)PG, C(15):C(17)PG, C(16):C(16)PG, and C(17):C(15)PG, a biphasic profile in the Tm versus [EtOH] plot was observed, and the minimum in the plot for each PG occurred at 33, 15, 19, and 36 mg/ml, respectively. This biphasic behavior is typical of phospholipids whose acyl chain asymmetry is fairly small. For C(18):C(14)PG, only a linear decrease in the Tm was observed as a function of ethanol concentration; this effect is characteristic of highly asymmetric phospholipids. Our DSC results obtained with mixed-chain PG in the presence of ethanol demonstrate that the acyl chain asymmetry of the five lipids studied can be ranked as follows: C(15):C(17)PG+info)

Thermotropic phase behavior of mixed-chain phosphatidylglycerols: implications for acyl chain packing in fully hydrated bilayers. (6/2195)

In this communication we report the first systematic investigation of the thermodynamic properties of fully hydrated mixed-chain phosphatidylglycerols (PG) using high-resolution differential scanning calorimetry (DSC). The crystal structure of dimyristoylphosphatidylglycerol shows an acyl chain conformation that is nearly opposite to that of phosphatidylcholine (PC). In PC, the sn-1 chain is straight while the sn-2 chain contains a bend; for PG, the sn-1 contains a bend while the sn-2 chain is in the all-trans conformation (R.H. Pearson, I. Pascher, The molecular structure of lecithin dihydrate, Nature, 281 (1978) 499-501; I. Pascher, S. Sundell, K. Harlos, H. Eibl, Conformational and packing properties of membrane lipids: the crystal structure of sodium dimyristoylphosphatidylglycerol, Biochim. Biophys. Acta, 896 (1987) 77-88). If the structure of PG found in the single crystal can be extrapolated to that in the fully hydrated gel-state bilayer, the observed difference in acyl chain conformations implies that modulation of the acyl chain asymmetry will have an opposite effect on the thermotropic phase behavior of PG and PC. For example, it is expected, based on the crystal structures, that C(15):C(13)PG should have a higher main phase transition temperature (Tm) than C(14):C(14)PG, and C(13):C(15)PG should have a lower Tm than C(14):C(14)PG. However, our DSC studies show clearly that the expectation is not borne out by experimental data. Rather, the Tm values of C(15):C(13)PG, C(14):C(14)PG, and C(13):C(15)PG are 18.2 degrees C, 23.1 degrees C, and 24.4 degrees C, respectively. Several other PGs, each with a unique acyl chain composition, have also been studied in this laboratory using high-resolution DSC. It is shown that the acyl chain conformation of fully hydrated PG in general is nearly opposite to that seen in the PG crystal structure.  (+info)

An ordered metastable phase in hydrated phosphatidylethanolamine: the Y-transition. (7/2195)

By using time-resolved X-ray diffraction, differential scanning calorimetry and scanning densitometry, we observed rapid formation at low temperature of a metastable ordered phase, termed LR1 phase, in fully hydrated dihexadecylphosphatidylethanolamine (DHPE). The LR1 phase has the same lamellar repeat period as the gel Lbeta phase but differs from the latter in its more ordered, orthorhombic hydrocarbon chain arrangement. It forms at about 12 degrees C upon cooling and manifests itself as splitting of the sharp, symmetric wide-angle X-ray peak of the DHPE gel phase into two reflections. This transition, designated the 'Y-transition', is readily reversible and proceeds with almost no hysteresis between cooling and heating scans. Calorimetrically, the LR1-->Lbeta transition is recorded as a low-enthalpy (0.2 kcal/mol) endothermic event. The formation of the LR1 phase from the gel phase is associated with a small, about 2 microl/g, decrease of the lipid partial specific volume recorded by scanning densitometry, in agreement with a volume calculation based on the X-ray data. The formation of the equilibrium Lc phase was found to take place from within the LR1 phase. This appears to be the only observable pathway for crystallisation of DHPE upon low-temperature incubation. Once formed, the Lc phase of this lipid converts directly into Lbeta phase at 50 degrees C, skipping the LR1 phase. Thus, the LR1 phase of DHPE can only be entered by cooling of the gel Lbeta phase. The data disclose certain similarities between the low-temperature polymorphism of DHPE and that of long-chain normal alkanes.  (+info)

Thermodynamics of the reconstitution of tuna cytochrome c from two peptide fragments. (8/2195)

Two peptide fragments from tuna cytochrome c (cyt c), N-fragment (residues 1-44 containing the heme) and C-fragment (residues 45-103), combine to form a 1:1 fragment complex. This was clearly proved by ion-spray mass spectrometry. It was found from CD and NMR spectra that the structure of the fragment complex formed is similar to that of an intact cyt c, although each isolated fragment itself is unstructured. Binding constants and enthalpies upon the complex formation were directly observed by isothermal titration calorimetry. Thermodynamic parameters (deltaG(o)b, deltaHb, deltaS(o)b, and deltaC(b)p)) associated with the complex formation were determined at various pHs and temperatures. DeltaHb was found to be almost independent of pH values. The change in heat capacity accompanying the complex formation (deltaC(b)p) was directly determined from the temperature dependence of deltaHb. In addition, the change in heat capacity and enthalpy upon tuna cyt c unfolding were determined by differential scanning calorimetry. Thermodynamic parameters for the unfolding/dissociation process of the fragment complex were compared with those for cyt c unfolding at pH 3.9 and 303 K. In a comparison of two unfolding processes, the heat capacity change of each was very close to the other, while both the unfolding enthalpy and entropy of the fragment complex were larger than those of tuna cyt c. These thermodynamic data suggest that the internal interactions between polar groups (hydrogen bonding) and nonpolar groups (van der Waals interactions) are preserved in the fragment complex as well as in the native state of cyt c.  (+info)