Mapping and structural dissection of human 20 S proteasome using proteomic approaches. (25/9620)

The proteasome, a proteolytic complex present in all eukaryotic cells, is part of the ATP-dependent ubiquitin/proteasome pathway. It plays a critical role in the regulation of many physiological processes. The 20 S proteasome, the catalytic core of the 26 S proteasome, is made of four stacked rings of seven subunits each (alpha7beta7beta7alpha7). Here we studied the human 20 S proteasome using proteomics. This led to the establishment of a fine subunit reference map and to the identification of post-translational modifications. We found that the human 20 S proteasome, purified from erythrocytes, exhibited a high degree of structural heterogeneity, characterized by the presence of multiple isoforms for most of the alpha and beta subunits, including the catalytic ones, resulting in a total of at least 32 visible spots after Coomassie Blue staining. The different isoforms of a given subunit displayed shifted pI values, suggesting that they likely resulted from post-translational modifications. We then took advantage of the efficiency of complementary mass spectrometric approaches to investigate further these protein modifications at the structural level. In particular, we focused our efforts on the alpha7 subunit and characterized its N-acetylation and its phosphorylation site localized on Ser(250).  (+info)

Dynamics of protein turnover, a missing dimension in proteomics. (26/9620)

Functional genomic experiments frequently involve a comparison of the levels of gene expression between two or more genetic, developmental, or physiological states. Such comparisons can be carried out at either the RNA (transcriptome) or protein (proteome) level, but there is often a lack of congruence between parallel analyses using these two approaches. To fully interpret protein abundance data from proteomic experiments, it is necessary to understand the contributions made by the opposing processes of synthesis and degradation to the transition between the states compared. Thus, there is a need for reliable methods to determine the rates of turnover of individual proteins at amounts comparable to those obtained in proteomic experiments. Here, we show that stable isotope-labeled amino acids can be used to define the rate of breakdown of individual proteins by inspection of mass shifts in tryptic fragments. The approach has been applied to an analysis of abundant proteins in glucose-limited yeast cells grown in aerobic chemostat culture at steady state. The average rate of degradation of 50 proteins was 2.2%/h, although some proteins were turned over at imperceptible rates, and others had degradation rates of almost 10%/h. This range of values suggests that protein turnover is a significant missing dimension in proteomic experiments and needs to be considered when assessing protein abundance data and comparing it to the relative abundance of cognate mRNA species.  (+info)

The predicted candidates of Arabidopsis plastid inner envelope membrane proteins and their expression profiles. (27/9620)

Plastid envelope proteins from the Arabidopsis nuclear genome were predicted using computational methods. Selection criteria were: first, to find proteins with NH(2)-terminal plastid-targeting peptides from all annotated open reading frames from Arabidopsis; second, to search for proteins with membrane-spanning domains among the predicted plastidial-targeted proteins; and third, to subtract known thylakoid membrane proteins. Five hundred forty-one proteins were selected as potential candidates of the Arabidopsis plastid inner envelope membrane proteins (AtPEM candidates). Only 34% (183) of the AtPEM candidates could be assigned to putative functions based on sequence similarity to proteins of known function (compared with the 69% function assignment of the total predicted proteins in the genome). Of the 183 candidates with assigned functions, 40% were classified in the category of "transport facilitation," indicating that this collection is highly enriched in membrane transporters. Information on the predicted proteins, tissue expression data from expressed sequence tags and microarrays, and publicly available T-DNA insertion lines were collected. The data set complements proteomic-based efforts in the increased detection of integral membrane proteins, low-abundance proteins, or those not expressed in tissues selected for proteomic analysis. Digital northern analysis of expressed sequence tags suggested that the transcript levels of most AtPEM candidates were relatively constant among different tissues in contrast to stroma and the thylakoid proteins. However, both digital northern and microarray analyses identified a number of AtPEM candidates with tissue-specific expression patterns.  (+info)

Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato. (28/9620)

The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during compatible or incompatible interactions. A new member of the PR-5 family was identified that accumulated early in both types of interaction. Other pathogenesis-related proteins appeared in compatible interactions only, concomitantly with disease development. This study demonstrates the feasibility of using proteomics for the identification of known and novel proteins in xylem sap, and provides insights into plant-pathogen interactions in vascular wilt diseases.  (+info)

Comparative proteomic analysis of extracellular proteins of Edwardsiella tarda. (29/9620)

A comparison of extracellular proteins of virulent and avirulent Edwardsiella tarda strains revealed several major, virulent-strain-specific proteins. Proteomic analysis identified two of the proteins in the virulent strain PPD130/91 as flagellin and SseB, which are virulence factors in bacterial pathogens. PCR amplification and DNA sequencing confirmed the presence of the genes that encode these proteins. Our results clearly demonstrated the potency of the proteomic approach in identifying virulence factors.  (+info)

Genomic and proteomic analysis of the myeloid differentiation program: global analysis of gene expression during induced differentiation in the MPRO cell line. (30/9620)

We have used an approach using 2-dimensional gel electrophoresis with mass spectrometry analysis combined with oligonucleotide chip hybridization for a comprehensive and quantitative study of the temporal patterns of protein and mRNA expression during myeloid development in the MPRO murine cell line. This global analysis detected 123 known proteins and 29 "new" proteins out of 220 protein spots identified by tandem mass spectroscopy, including proteins in 12 functional categories such as transcription factors and cytokines. Bioinformatic analysis of these proteins revealed clusters with functional importance to myeloid differentiation. Previous analyses have found that for a substantial number of genes the absolute amount of protein in the cell is not strongly correlated to the amount of mRNA. These conclusions were based on simultaneous measurement of mRNA and protein at just a single time point. Here, however, we are able to investigate the relationship between mRNA and protein in terms of simultaneous changes in their levels over multiple time points. This is the first time such a relationship has been studied, and we find that it gives a much stronger correlation, consistent with the hypothesis that a substantial proportion of protein change is a consequence of changed mRNA levels, rather than posttranscriptional effects. Cycloheximide inhibition also showed that most of the proteins detected by gel electrophoresis were relatively stable. Specific investigation of transcription factor mRNA representation showed considerable similarity to those of mature human neutrophils and highlighted several transcription factors and other functional nuclear proteins whose mRNA levels change prominently during MPRO differentiation but which have not been investigated previously in the context of myeloid development. Data are available online at http://bioinfo.mbb.yale.edu/expression/myelopoiesis.  (+info)

Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. (31/9620)

Drusen are extracellular deposits that accumulate below the retinal pigment epithelium on Bruch's membrane and are risk factors for developing age-related macular degeneration (AMD). The progression of AMD might be slowed or halted if the formation of drusen could be modulated. To work toward a molecular understanding of drusen formation, we have developed a method for isolating microgram quantities of drusen and Bruch's membrane for proteome analysis. Liquid chromatography tandem MS analyses of drusen preparations from 18 normal donors and five AMD donors identified 129 proteins. Immunocytochemical studies have thus far localized approximately 16% of these proteins in drusen. Tissue metalloproteinase inhibitor 3, clusterin, vitronectin, and serum albumin were the most common proteins observed in normal donor drusen whereas crystallin was detected more frequently in AMD donor drusen. Up to 65% of the proteins identified were found in drusen from both AMD and normal donors. However, oxidative protein modifications were also observed, including apparent crosslinked species of tissue metalloproteinase inhibitor 3 and vitronectin, and carboxyethyl pyrrole protein adducts. Carboxyethyl pyrrole adducts are uniquely generated from the oxidation of docosahexaenoate-containing lipids. By Western analysis they were found to be more abundant in AMD than in normal Bruch's membrane and were found associated with drusen proteins. Carboxymethyl lysine, another oxidative modification, was also detected in drusen. These data strongly support the hypothesis that oxidative injury contributes to the pathogenesis of AMD and suggest that oxidative protein modifications may have a critical role in drusen formation.  (+info)

Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. (32/9620)

The ubiquitin (Ub)-proteasome system includes a large family of deubiquitinating enzymes (DUBs). Many members are assigned to this enzyme class by sequence similarity but without evidence for biological activity. A panel of novel DUB-specific probes was generated by a chemical ligation method. These probes allowed identification of DUBs and associated components by tandem mass spectrometry, as well as rapid demonstration of enzymatic activity for gene products whose functions were inferred from primary structure. We identified 23 active DUBs in EL4 cells, including the tumor suppressor CYLD1. At least two DUBs tightly interact with the proteasome 19S regulatory complex. An OTU domain-containing protein, with no sequence homology to any known DUBs, was isolated. We show that this polypeptide reacts with the C terminus of Ub, thus demonstrating DUB-like enzymatic activity for this novel superfamily of proteases.  (+info)