Surfactant protein A suppresses reactive nitrogen intermediates by alveolar macrophages in response to Mycobacterium tuberculosis. (1/1584)

Mycobacterium tuberculosis attaches to, enters, and replicates within alveolar macrophages (AMs). Our previous studies suggest that surfactant protein A (SP-A) can act as a ligand in the attachment of M. tuberculosis to AMs. Reactive nitrogen intermediates (RNIs) play a significant role in the killing of mycobacteria. We have demonstrated that RNI levels generated by AMs were significantly increased when interferon-gamma-primed AMs were incubated with M. tuberculosis. However, the RNI levels were significantly suppressed in the presence of SP-A (10 microg/ml). The specificity of SP-A's effect was demonstrated by the use of F(ab')2 fragments of anti-SP-A monoclonal antibodies and by the use of mannosyl-BSA, which blocked the suppression of RNI levels by SP-A. Furthermore, incubation of deglycosylated SP-A with M. tuberculosis failed to suppress RNI by AMs, suggesting that the oligosaccharide component of SP-A, which binds to M. tuberculosis, is necessary for this effect. These results show that SP-A-mediated binding of M. tuberculosis to AMs significantly decreased RNI levels, suggesting that this may be one mechanism by which M. tuberculosis diminishes the cytotoxic response of activated AMs.  (+info)

Inhibition of hSP-B promoter in respiratory epithelial cells by a dominant negative retinoic acid receptor. (2/1584)

Retinoic acid (RA) receptors (RARs) belong to the nuclear hormone receptor superfamily and play important roles in lung differentiation, growth, and gene regulation. Surfactant protein (SP) B is a small hydrophobic protein synthesized and secreted by respiratory epithelial cells in the lung. Expression of the SP-B gene is modulated at the transcriptional and posttranscriptional levels. In the present work, immunohistochemical staining revealed that RAR-alpha is present on day 14.5 of gestation in the fetal mouse lung. To assess whether RAR is required for SP-B gene transcription, a dominant negative mutant human (h) RAR-alpha403 was generated. The hRAR-alpha403 mutant was transcribed and translated into the truncated protein product by reticulocyte lysate in vitro. The mutant retained DNA binding activity in the presence of retinoid X receptor-gamma to an RA response element in the hSP-B promoter. When transiently transfected into pulmonary adenocarcinoma epithelial cells (H441 cells), the mutant hRAR-alpha403 was readily detected in the cell nucleus. Cotransfection of the mutant hRAR-alpha403 repressed activity of the hSP-B promoter and inhibited RA-induced surfactant proprotein B production in H441 cells, supporting the concept that RAR is required for hSP-B gene transcription in vitro.  (+info)

Changes in surfactant-associated protein mRNA profile in growth-restricted fetal sheep. (3/1584)

To test the hypothesis that chronic placental insufficiency resulting in fetal growth restriction causes an increase in fetal lung surfactant-associated protein (SP) gene expression, we embolized chronically catheterized fetal sheep (n = 6) daily using nonradioactive microspheres in the abdominal aorta for 21 days (between 0.74 and 0.88 of gestation) until fetal arterial oxygen content was reduced by approximately 40-50%. Control animals (n = 7) received saline only. Basal fetal plasma cortisol concentration was monitored. At the end of the experiment, fetal lung tissues were collected, and ratios of tissue levels of SP-A, SP-B, and SP-C mRNA to 18S rRNA were determined by standard Northern blot analysis. Total DNA content of fetal lungs was reduced by 30% in the embolized group compared with control group (P = 0.01). There was a 2.7-fold increase in fetal lung SP-A mRNA (P < 0.05) and a 3.2-fold increase in SP-B mRNA (P < 0.01) in the chronically embolized group compared with those in the control group. SP-A and SP-B mRNA tissue levels were highly correlated with the mean fetal plasma cortisol levels on days 20-21 (r = 0.90, P < 0.01 for SP-A mRNA and r = 0.94, P < 0.01 for SP-B mRNA). SP-C mRNA tissue levels were not significantly affected by placental insufficiency. We conclude that fetal growth restriction due to placental insufficiency is associated with alterations in fetal lung SP, suggesting enhanced lung maturation that was highly dependent on the degree of increase in fetal plasma cortisol levels.  (+info)

Surfactant function and composition after free radical exposure generated by transition metals. (4/1584)

Surfactant dysfunction in acute lung injury has been postulated as a result of free radical damage to lipid and protein components. This study examines whether transition metals with different redox potentials and different binding affinities for lipids and proteins affect interfacial properties differently. Purified whole calf lung surfactant (CLS) was incubated with 0.125 mM Fe2+, Fe3+, Fe3+-EDTA complex, or Cu2+ either alone or with 0.25 mM H2O2 or H2O2 plus 0.25 mM ascorbate for 4 and 24 h. Lipid peroxidation was assessed by measurement of thiobarbituric acid-reactive substances (TBARS), and free radical-mediated alterations in protein structure were assessed by fluorescamine assay and Western blot analysis. Function was assayed by pulsating bubble surfactometry. Lipid peroxidation was detected in samples incubated with Fe2+, Fe3+, and Fe3+-EDTA but not with Cu2+. All transition metal-based free radical systems affected surfactant protein composition by fluorescamine assay, indicating free radical-mediated modification of protein side chains. Western blot analysis demonstrated surfactant protein A modification, with the generation of higher- and lower-molecular-mass immunoreactive products. Despite biochemical evidence of lipid and protein modification, surfactant dysfunction was minimal and was manifest as an increase in the compression ratio required to achieve surface tension < 1 dyn/cm. This dysfunction was readily reversed by the addition of 5 mM Ca2+ either before or after oxidation. These data indicate that copper- and iron-based free radical-generating systems modify the lipid and protein components of surfactant differently but suggest that these changes have little effect on surfactant function.  (+info)

Surfactant protein A enhances the binding and deacylation of E. coli LPS by alveolar macrophages. (5/1584)

Surfactant protein (SP) A and SP-D are involved in multiple immunomodulatory functions of innate host defense partly via their interaction with alveolar macrophages (AMs). In addition, both SP-A and SP-D bind to bacterial lipopolysaccharide (LPS). To investigate the functional significance of this interaction, we first tested the ability of SP-A and SP-D to enhance the binding of tritium-labeled Escherichia coli LPS to AMs. In contrast to SP-D, SP-A enhanced the binding of LPS by AMs in a time-, temperature-, and concentration-dependent manner. Coincubation with surfactant-like lipids did not affect the SP-A-mediated enhancement of LPS binding. At SP-A-to-LPS molar ratios of 1:2-1:3, the LPS binding by AMs reached 270% of control values. Second, we investigated the role of SP-A in regulating the degradation of LPS by AMs. In the presence of SP-A, deacylation of LPS by AMs increased by approximately 2.3-fold. Pretreatment of AMs with phosphatidylinositol-specific phospholipase C had no effect on the SP-A-enhanced LPS binding but did reduce the amount of serum-enhanced LPS binding by 50%, suggesting that a cell surface molecule distinct from CD14 mediates the effect of SP-A. Together the results for the first time provide direct evidence that SP-A enhances LPS binding and degradation by AMs.  (+info)

Sac1p plays a crucial role in microsomal ATP transport, which is distinct from its function in Golgi phospholipid metabolism. (6/1584)

Analysis of microsomal ATP transport in yeast resulted in the identification of Sac1p as an important factor in efficient ATP uptake into the endoplasmic reticulum (ER) lumen. Yet it remained unclear whether Sac1p is the authentic transporter in this reaction. Sac1p shows no homology to other known solute transporters but displays similarity to the N-terminal non-catalytic domain of a subset of inositol 5'-phosphatases. Furthermore, Sac1p was demonstrated to be involved in inositol phospholipid metabolism, an activity whose absence contributes to the bypass Sec14p phenotype in sac1 mutants. We now show that purified recombinant Sac1p can complement ATP transport defects when reconstituted together with sac1Delta microsomal extracts, but is unable to catalyze ATP transport itself. In addition, we demonstrate that sac1Delta strains are defective in ER protein translocation and folding, which is a direct consequence of impaired ATP transport function and not related to the role of Sac1p in Golgi inositol phospholipid metabolism. These data suggest that Sac1p is an important regulator of microsomal ATP transport providing a possible link between inositol phospholipid signaling and ATP-dependent processes in the yeast ER.  (+info)

A novel small protein associated with a conjugated trienoic chromophore from membranes of scallop adductor muscle: phosphorylation by protein kinase A. (7/1584)

Membranes enriched in sarcolemma from the cross-striated adductor muscle of the deep sea scallop have been found to contain a previously undescribed small protein of 6-8 kDa that can be released by treatment with organic solvent mixtures. This proteolipid co-purified with a non-amino acid chromophore containing a conjugated trienoic moiety. Although common in plants and algae, such a stable conjugated trienoic group is unusual for an animal cell. The N-terminal amino acid sequence of the protein was XEFQHGLFGXF/ADNIGLQ, which most strongly resembles sequences in the triacyl glycerol lipase precursor and the product of the human breast cancer susceptibility gene BRCA 1, but does not show similarity to previously described proteolipids. The protein was found to be one of the major substrates in its parent membrane for the catalytic subunit of protein kinase A, which may imply a regulatory function for this molecule.  (+info)

Functional production and reconstitution of the human equilibrative nucleoside transporter (hENT1) in Saccharomyces cerevisiae. Interaction of inhibitors of nucleoside transport with recombinant hENT1 and a glycosylation-defective derivative (hENT1/N48Q). (8/1584)

We have produced recombinant human equilibrative nucleoside transporter (hENT1) in the yeast Saccharomyces cerevisiae and have compared the binding of inhibitors of equilibrative nucleoside transport with the wild-type transporter and a N-glycosylation-defective mutant transporter. Equilibrium binding of 3H-labelled nitrobenzylmercaptopurine ribonucleoside {6-[(4-nitrobenzyl)thio]-9-beta-d-ribofuranosyl purine; NBMPR} to hENT1-producing yeast revealed a single class of high-affinity sites that were shown to be in membrane fractions by (1) equilibrium binding (means+/-S.D.) of [3H]NBMPR to intact yeast (Kd 1.2+/-0.2 nM; Bmax 5.0+/-0.5 pmol/mg of protein) and membranes (Kd 0.7+/-0.2 nM; Bmax 6.5+/-1 pmol/mg of protein), and (2) reconstitution of hENT1-mediated [3H]thymidine transport into proteoliposomes that was potently inhibited by NBMPR. Dilazep and dipyridamole inhibited NBMPR binding to hENT1 with IC50 values of 130+/-10 and 380+/-20 nM respectively. The role of N-linked glycosylation in the interaction of NBMPR with hENT1 was examined by the quantification of binding of [3H]NBMPR to yeast producing either wild-type hENT1 or a glycosylation-defective mutant (hENT1/N48Q) in which Asn-48 was converted into Gln. The Kd for binding of NBMPR to hENT1/N48Q was 10. 5+/-1.6 nM, indicating that the replacement of an Asn residue with Gln decreased the affinity of hENT1 for NBMPR. The decreased affinity of hENT1/N48Q for NBMPR was due to an increased rate of dissociation (koff) and a decreased rate of association (kon) of specifically bound [3H]NBMPR because the values for hENT1-producing and hENT1/N48Q-producing yeast were respectively 0.14+/-0.02 and 0. 36+/-0.05 min-1 for koff, and (1.2+/-0.1)x10(8) and (0.40+/-0. 04)x10(8) M-1.min-1 for kon. These results indicated that the conservative conversion of an Asn residue into Gln at position 48 of hENT1 and/or the loss of N-linked glycosylation capability altered the binding characteristics of the transporter for NBMPR, dilazep and dipyridamole.  (+info)