Equilibrative-sensitive nucleoside transporter and its role in gemcitabine sensitivity. (1/45)

Salvage of preformed nucleosides requires transport across the plasma membrane by sodium-dependent (concentrative) and sodium-independent (equilibrative) mechanisms. These transport systems are also the route of cellular uptake for nucleoside analogues, including gemcitabine (2',2'-difluorodeoxycytidine), a deoxycytidine analogue used in the treatment of pancreatic cancer. To determine whether gemcitabine cytotoxicity is influenced by the equilibrative-sensitive nucleoside transporter (es-NT), basal levels of the es-NT were quantified in three human pancreatic cancer cell lines (PANC-1, HS-766T, and PK-8) and one human bladder cancer cell line (MGH-U1) by flow cytometric analysis, and the results were compared with gemcitabine cytotoxicity assessed by clonogenic assay. To determine whether the salvage pathway of DNA synthesis can be up-regulated by inhibiting de novo DNA synthesis, combination experiments were carried out using the thymidylate synthase (TS) inhibitors 5-fluorouracil or raltitrexed with gemcitabine in a concurrent and sequential fashion. No relationship between basal es-NT and gemcitabine cytotoxicity was demonstrated. For two pancreatic cell lines, sequence-dependent effects of the combination of TS inhibitors and gemcitabine were seen with maximum effect when the TS inhibitors preceded gemcitabine. This was also associated with a significant increase in es-NT levels caused by the TS inhibitors. Thus, modulation of the es-NT by pretreatment with TS inhibitors may have the potential to improve the therapeutic benefit of gemcitabine.  (+info)

Molecular cloning and functional characterization of inhibitor-sensitive (mENT1) and inhibitor-resistant (mENT2) equilibrative nucleoside transporters from mouse brain. (2/45)

Mammalian cells express at least two subtypes of equilibrative nucleoside transporters, i.e. ENT1 and ENT2, which can be distinguished functionally by their sensitivity and resistance respectively to inhibition by nitrobenzylthioinosine. The ENT1 transporters exhibit distinctive species differences in their sensitivities to inhibition by dipyridamole, dilazep and draflazine (human>mouse>rat). A comparison of the ENT1 structures in the three species would facilitate the identification of the regions involved in the actions of these cardioprotective agents. We now report the molecular cloning and functional expression of the murine (m)ENT1 and mENT2 transporters. mENT1 and mENT2 encode proteins containing 458 and 456 residues respectively, with a predicted 11-transmembrane-domain topology. mENT1 has 88% and 78% amino acid identity with rat ENT1 and human ENT1 respectively; mENT2 is more highly conserved, with 94% and 88% identity with rat ENT2 and human ENT2 respectively. We have also isolated two additional distinct cDNAs that encode proteins similar to mENT1; these probably represent distinct mENT1 isoforms or alternative splicing products. One cDNA encodes a protein with two additional amino acids (designated mENT1b) that adds a potential protein kinase CK2 phosphorylation site in the central intracellular loop of the transporter, and is similar, in this regard, to the human and rat ENT1 orthologues. The other cDNA has a 5'-untranslated region sequence that is distinct from that of full-length mENT1. Microinjection of mENT1, mENT1b or mENT2 cRNA into Xenopus oocytes resulted in enhanced uptake of [(3)H]uridine by the oocytes relative to that seen in water-injected controls. mENT1-mediated, but not mENT2-mediated, [(3)H]uridine uptake was inhibited by nitrobenzylthioinosine and dilazep. Dipyridamole inhibited both mENT1 and mENT2, but was significantly more effective against mENT1. Adenosine inhibited both systems with a similar potency, as did a range of other purine and pyrimidine nucleosides. These results are compatible with the known characteristics of the native mENT1 and mENT2 transporters.  (+info)

Identification of Cys140 in helix 4 as an exofacial cysteine residue within the substrate-translocation channel of rat equilibrative nitrobenzylthioinosine (NBMPR)-insensitive nucleoside transporter rENT2. (3/45)

The human and rat equilibrative nucleoside transporter proteins hENT1, rENT1, hENT2 and rENT2 belong to a family of integral membrane proteins with 11 potential transmembrane segments (TMs), and are distinguished functionally by differences in transport of nucleobases and sensitivity to inhibition by nitrobenzylthioinosine (NBMPR) and vasoactive drugs. In the present study, we have produced recombinant hENT1, rENT1, hENT2 and rENT2 in Xenopus oocytes and investigated uridine transport following exposure to the impermeant thiol-reactive reagent p-chloromercuriphenyl sulphonate (PCMBS). PCMBS caused reversible inhibition of uridine influx by rENT2, but had no effect on hENT1, hENT2 or rENT1. This difference correlated with the presence in rENT2 of a unique Cys residue (Cys(140)) in the outer half of TM4 that was absent from the other ENTs. Mutation of Cys(140) to Ser produced a functional protein (rENT2/C140S) that was insensitive to inhibition by PCMBS, identifying Cys(140) as the exofacial Cys residue in rENT2 responsible for PCMBS inhibition. Uridine protected wild-type rENT2 against PCMBS inhibition, suggesting that Cys(140) in TM4 lies within or is closely adjacent to the substrate-translocation channel of the transporter. TM4 has been shown previously to be within a structural domain (TMs 3-6) responsible for interactions with NBMPR, vasoactive drugs and nucleobases.  (+info)

Nucleoside transporter subtype expression: effects on potency of adenosine kinase inhibitors. (4/45)

1. Adenosine kinase (AK) inhibitors can enhance adenosine levels and potentiate adenosine receptor activation. As the AK inhibitors 5' iodotubercidin (ITU) and 5-amino-5'-deoxyadenosine (NH(2)dAdo) are nucleoside analogues, we hypothesized that nucleoside transporter subtype expression can affect the potency of these inhibitors in intact cells. 3. Three nucleoside transporter subtypes that mediate adenosine permeation of rat cells have been characterized and cloned: equilibrative transporters rENT1 and rENT2 and concentrative transporter rCNT2. We stably transfected rat C6 glioma cells, which express rENT2 nucleoside transporters, with rENT1 (rENT1-C6 cells) or rCNT2 (rCNT2-C6 cells) nucleoside transporters. 3. We tested the effects of ITU and NH(2)dAdo on [(3)H]-adenosine uptake and conversion to [(3)H]-adenine nucleotides in the three cell types. NH(2)dAdo did not show any cell type selectivity. In contrast, ITU showed significant inhibition of [(3)H]-adenosine uptake and [(3)H]-adenine nucleotide formation at concentrations < or =100 nM in rENT1-C6 cells, while concentrations > or =3 microM were required for C6 or rCNT2-C6 cells. 4. Nitrobenzylthioinosine (NBMPR; 100 nM), a selective inhibitor of rENT1, abolished the effects of nanomolar concentrations of ITU in rENT1-C6 cells. 5. This study demonstrates that the effects of ITU, but not NH(2)dAdo, in whole cell assays are dependent upon nucleoside transporter subtype expression. Thus, cellular and tissue differences in expression of nucleoside transporter subtypes may affect the pharmacological actions of some AK inhibitors.  (+info)

Characterisation of a concentrative type of adenosine transporter from Arabidopsis thaliana (ENT1,At). (5/45)

Here we report on the isolation of an Arabidopsis thaliana cDNA that is able to complement a Saccharomyces cerevisiae mutant unable to synthesise adenine. This cDNA encodes a highly hydrophobic protein (ENT1,At) of 428 amino acids, showing high similarity to the human nucleoside transporter hENT1. Yeast cells expressing ENT1,At are able to grow on adenosine-containing media, adenosine import exhibited an apparent affinity (K(M)) of 3.6 microM, and led to accumulation of this nucleoside within the yeast cell. Transport is inhibited by various nucleosides. Typical inhibitors of ENT-type nucleoside transporters do not inhibit (3)H-adenosine import. The presence of protonophores abolished adenosine import, indicating that ENT1,At catalyse a proton-dependent adenosine transport. This is the first functional characterisation of a plant nucleoside transport protein.  (+info)

Molecular evolution of the equilibrative nucleoside transporter family: identification of novel family members in prokaryotes and eukaryotes. (6/45)

Equilibrative nucleoside transporters (ENTs) are integral membrane proteins which enable the movement of hydrophilic nucleosides and nucleoside analogs down their concentration gradients across cell membranes. ENTs were only recently characterized at the molecular level, and little is known about the tertiary structure or distribution of these proteins in nonmammalian organisms. To identify conserved regions, residues, and motifs of ENTs that may indicate functionally important parts of the protein and to better understand the evolutionary history of this protein family, we conducted an exhaustive analysis to characterize and compare ENTs in taxonomically diverse organisms. We have identified novel ENT family members in humans, mice, fish, tunicates, slime molds, and bacteria. This greatly extends our knowledge on the distribution of the ENTs in eukaryotes, and we have identified, for the first time, family members in bacteria. The prokaryote ENTs are attractive models for future studies on transporter tertiary structure and mechanism of substrate translocation. Using sequence similarities, we have identified regions, residues, and motifs that are conserved across all family members. These areas are presumably correlated with function and therefore are important targets for future analysis. Finally, we propose an evolutionary history for the ENT family which clarifies the origin(s) of multiple isoforms in different taxa.  (+info)

Characterization of three novel members of the Arabidopsis thaliana equilibrative nucleoside transporter (ENT) family. (7/45)

Research on metabolism of nucleotides and their derivatives has gained increasing interest in the recent past. This includes de novo synthesis, analysis of salvage pathways, breakdown and transport of nucleotides, nucleosides and nucleobases. To perform a further step towards the analysis of nucleoside transport in Arabidopsis, we incubated leaf discs with various radioactively labelled nucleosides. Leaf cells imported labelled nucleosides and incorporated these compounds into RNA, but not into DNA. Furthermore, we report on the biochemical properties of three so far uncharacterized members of the Arabidopsis ENT (equilibrative nucleoside transporter) family (AtENT4, AtENT6 and AtENT7). After heterologous expression in yeast, all three proteins exhibited broad substrate specificity and transported the purine nucleosides adenosine and guanosine, as well as the pyrimidine nucleosides cytidine and uridine. The apparent K(m) values were in the range 3-94 microM, and transport was inhibited most strongly by deoxynucleosides, and to a smaller extent by nucleobases. Typical inhibitors of mammalian ENT proteins, such as dilazep and NBMPR (nitrobenzylmercaptopurine ribonucleoside, also known as nitrobenzylthioinosine) surprisingly exerted almost no effect on Arabidopsis ENT proteins. Transport mediated by the AtENT isoforms differed in pH-dependency, e.g. AtENT7 was not affected by changes in pH, AtENT3, 4 and 6 exhibited a less pronounced pH-dependency, and AtENT1 activity was clearly pH-dependent. Using a GFP (green fluorescent protein)-fusion protein transiently expressed in tobacco leaf protoplasts, a localization of AtENT6 in the plant plasma membrane has been revealed.  (+info)

Tissue distribution of concentrative and equilibrative nucleoside transporters in male and female rats and mice. (8/45)

Concentrative nucleoside transporters (Cnts) and equilibrative nucleoside transporters (Ents) have essential physiological functions and are important in disposition of anticancer and antiviral nucleoside analogs. Information on tissue distribution of Cnts and Ents in rodents is sparse. Thus, the present study aimed to determine the distribution of Cnt1-3 and Ent1-3 transcripts in 19 tissues of Sprague-Dawley rats and C57BL/6 mice of both genders. These six transcripts were quantified using the branched DNA signal amplification assay. Cnt1 transcripts were highest in small intestine, followed by kidney and testes, with similar expression in both species. Cnt2 mRNA was expressed highest in the small intestine of both rats and mice, intermediate in liver of rats but not in mice, and lower in thymus and spleen of both species. Cnt3 mRNA has marked species differences, with the highest expression in lung of rats but uterus of mice. Ent1 mRNA was most highly expressed in testes and lung of both species. Ent1 mRNA was highly expressed in liver and pituitary of mice, but not in rats. Ent2 mRNA was highly expressed in testes and brain of both species. Ent3 mRNA was highest in kidney, followed by testes, in both species. Significant gender differences were observed in kidney (mouse) and heart (rat). These studies demonstrate that in general, tissue distribution of Cnt and Ent is similar in rats and mice. However, a few important species and gender differences do exist, which could be responsible for related differences in efficacy and toxicity of substrates for these transporters.  (+info)