The differential processing of proenkephalin A in mouse and human breast tumour cell lines. (1/114)

We have carried out an investigation into the processing of the enkephalin-like immunoreactivity reported in breast tissue using two human breast tumour cell lines and a mouse tumour cell line. A 46 kDa form of proenkephalin (PE) has been observed in the cell lysates of two human breast tumour cell lines (MCF-7, ZR-75-1) and the mouse androgen-responsive Shionogi breast carcinoma cell line (SC115). PE processing in the cell lysates of these cells was assessed by a specific met-enkephalin RIA. The basal levels of processed PE in the MCF-7, ZR-75-1 and SC115 cell lysates were 30, 30 and 76% respectively. The processing enzymes PC1 and PC2, which have been implicated in the differential processing of PE, were detected by immunoblot analysis in these cells. PC1 was found within the cell extracts of all three cell lines. PC2 was only observed in the SC115 cell line, which may account for the higher percentage of processed PE measured. The cDNA of PC2 has been transfected into ZR-75-1 cells and this was accompanied by an increase in the level of processed PE from 30 to 76%. These breast tumour cell lines may provide a useful insight into the function of enkephalin-containing peptides in breast cancer.  (+info)

Long-term elevation of free fatty acids leads to delayed processing of proinsulin and prohormone convertases 2 and 3 in the pancreatic beta-cell line MIN6. (2/114)

To explore the role of chronically elevated free fatty acids (FFAs) in the pathogenesis of the hyperproinsulinemia of type 2 diabetes, we have investigated the effect of FFAs on proinsulin processing and prohormone convertases PC2 and PC1/PC3 in MIN6 cells cultured in Dulbecco's modified Eagle's medium with or without 0.5 mmol/l FFA mixture (palmitic acid:oleic acid = 1:2). After 7 days of culture, the percent of proinsulin in FFA-exposed cells was increased (25.9 +/-0.3% intracellular and 75.4 +/- 1.2% in medium vs. 13.5 +/-0.2 and 56.2 +/- 4.1%, respectively, in control cells). The biosynthesis and secretion of proinsulin and insulin were analyzed by comparing the incorporation of [3H]Leu and [35S]Met. In pulse-chase studies, proinsulin-to-insulin conversion was inhibited, and proinsulin in the medium was increased by 50% after 3 h of chase, while insulin secretion was decreased by 50% after FFA exposure. Levels of cellular PC2 and PC3 analyzed by Western blotting were decreased by 23 and 15%, respectively. However, PC2, PC3, proinsulin, and 7B2 mRNA levels were not altered by FFA exposure. To test for an effect on the biosynthesis of PC2, PC3, proinsulin, and 7B2, a protein required for PC2 activation, MIN6 cells were labeled with [35S]Met for 10-15 min, followed by a prolonged chase. Most proPC2 was converted after 6 h of chase in control cells, but conversion was incomplete even after 6 h of chase in FFA-exposed MIN6 cells. Media from chase incubations showed that FFA-exposed cells secreted more proPC2 than controls. Similar inhibitory effects were noted on the processing of proPC3, proinsulin, and 7B2. In conclusion, prolonged exposure of beta-cells to FFAs may affect the biosynthesis and posttranslational processing of proinsulin, PC2, PC3, and 7B2, and thereby contribute to the hyperproinsulinemia of type 2 diabetes. The mechanism of inhibition of secretory granule processing by FFAs may be through changes in Ca2+ concentration, the pH in the secretory granules, and/or other factors that may influence the activation and function of the convertases.  (+info)

Activation and routing of membrane-tethered prohormone convertases 1 and 2. (3/114)

Many peptide hormones and neuropeptides are processed by members of the subtilisin-like family of prohormone convertases (PCs), which are either soluble or integral membrane proteins. PC1 and PC2 are soluble PCs that are primarily localized to large dense core vesicles in neurons and endocrine cells. We examined whether PC1 and PC2 were active when expressed as membrane-tethered proteins, and how tethering to membranes alters the biosynthesis, enzymatic activity, and intracellular routing of these PCs. PC1 and PC2 chimeras were constructed using the transmembrane domain and cytoplasmic domain of the amidating enzyme, peptidylglycine alpha-amidating monooxygenase (PAM). The membrane-tethered PCs were rerouted from large dense core vesicles to the Golgi region. In addition, the chimeras were transiently expressed at the cell surface and rapidly internalized to the Golgi region in a fashion similar to PAM. Membrane-tethered PC1 and PC2 exhibited changes in pro-domain maturation rates, N-glycosylation, and in the pH and calcium optima required for maximal enzymatic activity against a fluorogenic substrate. In addition, the PC chimeras efficiently cleaved endogenous pro-opiomelanocortin to the correct bioactive peptides. The PAM transmembrane domain/cytoplasmic domain also prevented stimulated secretion of pro-opiomelanocortin products in AtT-20 cells.  (+info)

The SAAS granin exhibits structural and functional homology to 7B2 and contains a highly potent hexapeptide inhibitor of PC1. (4/114)

Prohormone convertases (PCs) 1 and 2 are thought to mediate the proteolytic cleavage of many peptide precursors. Endogenous inhibitors of both PC1 and PC2 have now been identified; the 7B2 protein is a nanomolar inhibitor of PC2, while the novel protein proSAAS was recently reported to be a micromolar inhibitor of PC1 [Fricker et al. (2000) J. Neurosci. 20, 639-648]. We here report evidence that 7B2 and proSAAS exhibit several elements of structural and functional homology. Firstly, 26 kDa human, mouse and rat proSAAS, like all vertebrate 7B2s, contain a proline-rich sequence within the first half of the molecule and also contain a C-terminal 40 residue peptide (SAAS CT peptide) separated from the remainder of the protein by a furin consensus sequence. The SAAS CT peptide contains the precise sequence of a hexapeptide previously identified by combinatorial peptide library screening as a potent inhibitor of PC1, and the vast majority of the inhibitory potency of proSAAS can be attributed to this hexapeptide. Further, like the 7B2 CT peptide, SAAS CT-derived peptides represent tight-binding competitive convertase inhibitors with nanomolar potencies. Lastly, recombinant PC1 is able to cleave the proSAAS CT peptide to a product with a mass consistent with cleavage following the inhibitory hexapeptide. Taken together, our results indicate that proSAAS and 7B2 may comprise two members of a functionally homologous family of convertase inhibitor proteins.  (+info)

The C-terminal region of proSAAS is a potent inhibitor of prohormone convertase 1. (5/114)

ProSAAS is a recently discovered 26-kDa neuroendocrine protein that was previously found to inhibit prohormone convertase (PC) 1 and not PC2. In the present study, the specificity of proSAAS toward other members of the prohormone convertase family was determined. Two microm proSAAS selectively inhibits PC1 but not furin, PACE4, PC5A, or PC7. The PC1 inhibitory region of proSAAS was mapped to an 8-12-residue region near the C terminus that includes a critical Lys-Arg sequence. Synthetic peptides corresponding to this region are competitive inhibitors of PC1 with apparent K(i) values of 14-40 nm. The inhibition becomes more effective with incubation time, indicating that the inhibitor is slow binding. A fusion protein containing the inhibitory region of proSAAS linked to the C terminus of glutathione S-transferase binds the 71-kDa form but not the 85-kDa form of PC1. This binding, which occurs at pH 5.5 and not at pH 7.4, is stable to incubation at room temperature for 1 h in the presence or absence of 0.5% Triton X-100 and/or 0.5 m NaCl. The removal of Ca(2+) with chelating agents partially releases the bound PC1. High concentrations of the inhibitory peptide quantitatively release the bound PC1. Taken together, these data support the proposal that proSAAS functions as an endogenous inhibitor of PC1.  (+info)

Impaired prohormone convertases in Cpe(fat)/Cpe(fat) mice. (6/114)

A spontaneous point mutation in the coding region of the carboxypeptidase E (CPE) gene results in a loss of CPE activity that correlates with the development of late onset obesity (Nagert, J. K., Fricker, L. D., Varlamov, O., Nishina, P. M., Rouille, Y., Steiner, D. F., Carroll, R. J., Paigen, B. J., and Leiter, E. H. (1995) Nat. Genet. 10, 135-142). Examination of the level of neuropeptides in these mice showed a decrease in mature bioactive peptides as a result of a decrease in both carboxypeptidase and prohormone convertase activities. A defect in CPE is not expected to affect endoproteolytic processing. In this report we have addressed the mechanism of this unexpected finding by directly examining the expression of the major precursor processing endoproteases, prohormone convertases PC1 and PC2 in Cpe(fat) mice. We found that the levels of PC1 and PC2 are differentially altered in a number of brain regions and in the pituitary. Since these enzymes have been implicated in the generation of neuroendocrine peptides (dynorphin A-17, beta-endorphin, and alpha- melanocyte-stimulating hormone) involved in the control of feeding behavior and body weight, we compared the levels of these peptides in Cpe(fat) and wild type animals. We found a marked increase in the level of dynorphin A-17, a decrease in the level of alpha-melanocyte-stimulating hormone, and an alteration in the level of C-terminally processed beta-endorphin. These results suggest that the impairment in the level of these and other peptides involved in body weight regulation is mainly due to an alteration in carboxypeptidase and prohormone convertase activities and that this may lead to the development of obesity in these animals.  (+info)

Elevated expression of proprotein convertases alters breast cancer cell growth in response to estrogen and tamoxifen. (7/114)

Two proprotein convertase cDNAs, PC1 and furin, were stably transfected into the human breast cancer cell line MCF-7. The PC1 or furin over-expressing cells possessed an altered morphology. When grown in vitro in a serum-free medium, the population doubling time of the convertase-transfected cells was twice that of wild-type (WT) cells. High concentrations of estradiol stimulated the growth of all three cell types to a similar extent; however, at low concentrations of estradiol, the convertase-transfected cells grew more slowly than WT cells. In athymic nude mice implanted with 5 mg estradiol pellets, the growth of tumors of convertase-transfected MCF-7 cells was stimulated to a degree similar to that of WT MCF-7 tumors. However, in mice implanted with lower-dose (1.5 mg) estradiol pellets, the tumors of PC1- or furin-transfected MCF-7 cells grew approximately five times slower than those of WT MCF-7 cells. In mice implanted with tamoxifen pellets, tumors of PC1- or furin-transfected MCF-7 cells regressed approximately five times slower than the WT tumors. This study shows that the over-expression of proprotein convertases confers a greater estrogen dependency and anti-estrogen resistance on human breast cancer cells.  (+info)

Processing of proSAAS in neuroendocrine cell lines. (8/114)

ProSAAS, a recently discovered granin-like protein, potently inhibits prohormone convertase (PC)1, and might also perform additional functions. In the present study, the processing of proSAAS was compared in two neuroendocrine cell lines overexpressing this protein: the AtT-20 mouse pituitary corticotrophic line and the PC12 rat adrenal phaeochromocytoma line. The processing of proSAAS was examined by pulse-chase analysis using [(3)H]leucine, by MS, and by chromatography and radioimmunoassay. Various smaller forms of proSAAS were detected, including peptides designated as little SAAS, PEN and big LEN. Because the PC-12 cells used in the present study do not express either PC1 or PC2, the finding that these cells efficiently cleave proSAAS indicates that these cleavages do not require either enzyme. Two of the peptides identified in AtT-20 media represent novel C-terminally truncated forms of PEN. In both cell lines, the secretion of the small proSAAS-derived peptides is stimulated by secretagogues. However, long-term treatment of wild-type AtT-20 cells with two different secretagogues (8-bromo-cAMP and a phorbol ester) does not affect levels of proSAAS mRNA; this treatment significantly increases PC1 mRNA by approx. 60-80%. The lack of co-regulation of proSAAS and PC1 mRNA implies that enzyme activity can be induced without an accompanying increase in the inhibitor. In addition, the finding that the peptides are secreted via the regulated pathway is consistent with the proposal that they may function as neuropeptides.  (+info)