Water deprivation enhances the inhibitory effect of natriuretic peptides on cAMP synthesis in rat renal glomeruli. (65/308)

This study investigates the effect of water deprivation on the expression of atrial natiruretic peptide (ANP)(1-28) binding sites in rat kidney. Water deprivation increased the B(max) of glomerular binding sites for ANP(1-28) and C-type natriuretic peptide (CNP)(1-22) without modifying their affinity, an effect that was prevented in the presence of C-atrial natriuretic factor (C-ANF), suggesting that natriuretic peptide receptor-C (NPR-C) binding sites might be enhanced. Our results indicate that ANP(1-28), CNP(1-22), and C-ANF inhibit cAMP synthesis directly stimulated by forskolin or by the physiological agonists histamine and 5-hydroxytryptamine. The inhibitory effect was found to be significantly greater in water-deprived rats than in controls. Our observations suggest that this effect must be attributed to the 67-kDa NPR-C-like protein, because the 67- and 77-kDa NPR-C-like proteins show high and low affinities for CNP(1-22), respectively, and the enhanced inhibitory effect of CNP on cAMP generation in water-deprived rats was detected at subnanomolar concentrations. In addition, using affinity cross-linking studies we have observed that water deprivation increases the expression of the 67-kDa NPR-C-like protein, and HS-142, which binds to NPR-A and the 77-kDa NPR-C-like but not the 67-kDa protein, reduced ligand internalization without affecting cAMP inhibition by ANP(1-28). Finally, we have found that ligand binding to the 67-kDa NPR-C-like protein is reduced by GTPgammaS, suggesting that this receptor is associated with a G protein in renal glomeruli. The enhanced inhibitory role of natriuretic peptides on cAMP synthesis induced by water deprivation may influence glomerular function in the rat kidney.  (+info)

Hypertonicity increases CLC-5 expression in mouse medullary thick ascending limb cells. (66/308)

Genetic studies indicated that mutations of the chloride channel CLC-5 in the kidney are responsible for a group of clinical disorders, collectively called Dent's disease. In the kidney, CLC-5 was found to be expressed in the proximal tubule, medullary thick ascending limb (mTAL) of loop of Henle, and intercalated cells of the collecting tubule. In proximal tubular cells, CLC-5 was found to play an important role in receptor-mediated endocytosis. However, the functional roles of CLC-5 in mTAL and collecting tubules remain unclear. Because mTAL is normally exposed to a hypertonic environment, we aimed to examine the effect of hypertonicity on CLC-5 expression in this nephron segment. Our studies revealed that exposure to hypertonicity (up to 550 mosM) increased CLC-5 mRNA and protein levels in a murine mTAL cell line (MTAL) but not in an opossum kidney (OK) proximal tubular cell line. A similar effect was also found in mouse kidneys, where CLC-5 expression was enhanced in renal medulla, but not cortex, after 48 h of water deprivation. We also tested the effect of hypertonicity on endocytotic activity and found that exposure to hypertonicity caused a significant decrease in cellular uptake of FITC-labeled albumin in OK but not in MTAL cells. Our results suggest that CLC-5 expression is upregulated by hypertonicity in mTAL cells but not in proximal tubular cells. We speculate that the increased CLC-5 levels in mTAL may serve to maintain the endocytotic activity in a hypertonic environment.  (+info)

Uncoupling of vasopressin signaling in collecting ducts from rats with CBL-induced liver cirrhosis. (67/308)

Vasopressin (AVP) stimulates collecting duct water reabsorption through cAMP-mediated membrane targeting and increased expression of the aquaporin-2 (AQP2) water channel. Rats with liver cirrhosis induced by common bile duct ligation (CBL) show decreased protein expression of AQP2 despite increased plasma concentrations of AVP. The present study was conducted to investigate possible mechanisms behind this uncoupling of AVP signaling. The rats were examined 4 wk after CBL or sham operation. The CBL rats had increased plasma AVP concentrations (CBL: 3.2 +/- 0.2 vs. sham: 1.4 +/- 0.4 pg/ml, P < 0.05) and reduced AQP2 (0.62 +/- 0.11) and phosphorylated AQP2 (0.50 +/- 0.06) protein expression compared with sham-operated rats. However, examination of subcellular AQP2 localization by immunohistochemistry showed unchanged plasma membrane targeting in CBL rats, indicating a sustained ability of AQP2 short-term regulation. In a separate series of animals, thirsting was found to normalize AQP2 expression, indicating that AVP uncoupling in CBL rats is a physiological compensatory mechanism aimed at avoiding dilutional hyponatremia. Studies on microdissected collecting ducts from CBL rats showed decreased cAMP accumulation in response to AVP stimulation. The presence of the nonspecific phosphodiesterase inhibitor IBMX normalized the cAMP accumulation, indicating that cAMP-phosphodiesterase activity is increased in CBL rats. However, in contrast to this, Western blotting showed a decreased expression of several phosphodiesterase splice variants. We conclude that CBL rats develop an escape from AVP to prevent the formation of dilutional hyponatremia in response to increased plasma AVP concentrations. The mechanism behind AVP escape seems to involve decreased collecting duct sensitivity to AVP as a result of increased cAMP-phosphodiesterase activity.  (+info)

Vasopressin and oxytocin release and the thyroid function. (68/308)

The aim of the present investigations was to examine the effects of the states of hypothyroidism or hyperthyroidism on vasopressin (AVP) and oxytocin (OT) release under conditions of equilibrated water metabolism as well as of osmotic stimulation, brought about by the dehydration or hypertonic saline administration. The euhydrated and simultaneously hypothyroid rats showed decreased hypothalamic AVP and OT content and somewhat higher but not significant neurohypophysial AVP content. In these animals the raised OT (but not AVP) plasma level has been observed. In hyperthyroid rats drinking tap water ad libitum the neurohypophysial AVP and OT content significantly diminished; plasma OT concentration (but not AVP) was then elevated. The state of osmotic stimulation was the reason of different response of the hypothalamo-neurohypohysial system function in hypo- or hyperthyroid rats. Significant decreases of neurohypophysial AVP and OT content were found in both hypothyroid dehydrated as well as hypothyroid hypertonic saline-treatment rats as compared with hypothyroid euhydrated ones. On the contrary, in the state of hyperthyroidism AVP content in the neurohypophysis distinctly raised in dehydrated and salt-loaded rats; in these last neurohypophysial OT content increased as well. Plasma OT (but not AVP) distinctly diminished in hyperthyroid and simultaneously dehydrated or hypertonic saline injected rats in relation to hyperthyroid control subgroup. Data from the present study suggest that: 1). altered thyroid gland function affects vasopressin and oxytocin release from the hypothalamo-neurohypophysial system in the state of equilibrated water metabolism; 2). the state of hypo- or hyperthyroidism modifies the response of AVP-ergic and OT-ergic neurons upon the osmoreceptors/osmodetectors stimulation. It may be supposed that OT-ergic neurons display greater than AVP-ergic neurons sensitivity upon the thyroid hormone influence.  (+info)

Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. (69/308)

Apelin, a recently isolated neuropeptide that is expressed in the supraoptic and the paraventricular nuclei, acts on specific receptors located on vasopressinergic neurons. The increased phasic pattern of these neurons facilitates sustained antidiuresis during dehydration or lactation. Here, we investigated whether apelin interacts with arginine vasopressin (AVP) to maintain body fluid homeostasis. We first characterized the predominant molecular forms of endogenous hypothalamic and plasma apelin as corresponding to apelin 13 and, to a lesser extent, to apelin 17. We then demonstrated that, in lactating rats, apelin was colocalized with AVP in supraoptic nucleus magnocellular neurons and given intracerebroventricularly inhibited the phasic electrical activity of AVP neurons. In lactating mice, intracerebroventricular administration of apelin 17 reduced plasma AVP levels and increased diuresis. Moreover, water deprivation, which increases systemic AVP release and causes depletion of hypothalamic AVP stores, decreased plasma apelin concentrations and induced hypothalamic accumulation of the peptide, indicating that AVP and apelin are conversely regulated to facilitate systemic AVP release and suppress diuresis. Opposite effects of AVP and apelin are likely to occur at the hypothalamic level through autocrine modulation of the phasic electrical activity of AVP neurons. Altogether, these data demonstrate that apelin acts as a potent diuretic neuropeptide counteracting AVP actions through inhibition of AVP neuron activity and AVP release. The coexistence of apelin and AVP in magnocellular neurons, their opposite biological effects, and regulation are likely to play a key role for maintaining body fluid homeostasis.  (+info)

Renal and hormonal effects of water deprivation in late-term pregnant rats. (70/308)

Water-retaining hormones are stimulated during pregnancy allowing normal volume expansion. Because pregnant rats actively retain water, we postulate that water deprivation (WD) would cause a greater reduction in plasma volume in pregnant than in nonpregnant rats. To test this hypothesis, Sprague-Dawley pregnant and nonpregnant rats were water-deprived for 48 hours. At day 19 of pregnancy, or in the corresponding day in nonpregnant rats, they were randomly assigned to either a WD or a control (C) pair-fed group (n=10 to 12 per group). WD significantly reduced body weight, food intake, and creatinine clearance, and increased urinary osmolality in nonpregnant and pregnant rats. WD reduced plasma volume in a similar proportion in nonpregnant and pregnant rats (nonpregnant rats C=13.1+/-0.4, WD=11.0+/-0.2; pregnant rats C=19.4+/-0.7, WD=16.8+/-0.5 mL, P<0.001). Both groups of pregnant rats had a similar reduction in blood pressure. Plasma renin activity (nonpregnant rats C=6.1+/-1.1, WD=20.5+/-2.0; pregnant rats C=49+/-9.7, WD=94+/-12 ng angiotensin I/mL per hour, P<0.001) and plasma aldosterone levels were increased by pregnancy and further increased by WD. WD significantly reduced urinary kallikrein. WD caused a significant reduction in fetal but not placental weights. Present data indicate that 48-hour WD reduced renal kallikrein and further stimulated water-retaining hormones. We speculate that these are compensatory changes contributing to the maintenance of pregnancy in response to WD.  (+info)

Expression of hypothalamic arginine vasotocin gene in response to water deprivation and sex steroid administration in female Japanese quail. (71/308)

Arginine vasotocin (AVT) is a neurohypophyseal hormone involved in reproductive function and control of osmoregulation in birds. In view of the dual function of AVT, the present experiment was designed to observe the effect of water deprivation (WD) and sex steroid [estradiol benzoate (EB) and testosterone propionate (TP)] treatment independently, as well as simultaneously, on the profile/activity of the hypothalamic AVT system. WD resulted in a significant increase in plasma osmolality, sodium ion concentration and AVT concentration, but administration of sex steroids had no significant influence on these parameters. By contrast, the amount of hypothalamic AVT transcript (northern analysis) and the size of immunoreactive vasotocin (ir-AVT) neurons and hybridization signals (in the form of silver grains), representing AVT mRNA in corresponding neurons of paraventricular nuclei (PVN), increased significantly in all the treated groups compared with controls. Our findings indicate that although sex steroid administration has no effect on plasma osmolality and AVT concentration, unlike water deprivation, it may stimulate the profile/activity of AVT neurons of PVN, supporting the possibility of sex steroid receptors on these neurons. It is concluded that in quail, osmotic stress not only upregulates the expression of the AVT gene in existing neurons but also recruits many more neurons to increase the rate of AVT synthesis and secretion, while sex steroids appear to have a stimulatory effect only on the existing number of neurons and only at the level of transcription/translation and hence may influence/modulate hypothalamic AVT gene expression in response to osmotic stress. This study also suggests an interrelationship between reproduction and AVT system/function in birds.  (+info)

Differential regulation of basolateral Cl-/HCO3- exchangers SLC26A7 and AE1 in kidney outer medullary collecting duct. (72/308)

SLC26A7 is a recently identified Cl(-)/HCO(3)(-) exchanger that co-localizes with AE1 on the basolateral membrane of Alpha intercalated cells (A-IC) in outer medullary collecting duct (OMCD). The purpose of these studies was to determine whether AE1 and SLC26A7 are differentially regulated in OMCD in pathophysiologic states. Toward this end, the expression and regulation of AE1 and SLC26A7 was examined in water deprivation, a condition known to increase the osmolality of the medulla. Rats were subjected to 3 d of water deprivation while having free access to food. Northern hybridizations demonstrated that in the outer medulla, the mRNA expression of SLC26A7 increased by approximately 300% (P < 0.01 versus control; n = 3), whereas the expression of AE1 decreased by approximately 50% (P < 0.05 versus control, n = 3) in water-deprived rats. Immunoblot analysis studies demonstrated that in the outer medulla, SLC26A7 abundance increased by approximately 3.5-fold (P < 0.02 versus control; n = 3), whereas the AE1 abundance decreased by approximately 55% (P < 0.05 versus control) in water deprivation. The expression of SLC26A7 remained unchanged in the kidney cortex and stomach in water deprivation, indicating the specificity of SLC26A7 upregulation in outer medulla. In situ hybridization indicated the exclusive expression of SLC26A7 in the outer medulla and double immunofluorescence labeling confirmed the co-localization of AE1 and SLC26A7 on the basolateral membrane of A-IC cells in OMCD. It is concluded that AE1 and SLC26A7 are differentially regulated in OMCD in water deprivation. On the basis of these results and previous functional studies indicating the activation of SLC26A7 activity by high osmolality, it is proposed that SLC26A7 may play an important role in bicarbonate reabsorption and or cell volume regulation in OMCD (specifically under hypertonic conditions).  (+info)