Impaired solute accumulation in inner medulla of Clcnk1-/- mice kidney. (25/308)

The CLC-K1 chloride channel is a kidney-specific CLC chloride channel expressed in the thin ascending limb of Henle's loop (tAL). Recently, we determined that Clcnk1-/- mice show nephrogenic diabetes insipidus (NDI). To investigate the pathogenesis of impaired urinary concentrating ability, we analyzed renal functions of Clcnk1-/- mice in more detail. The osmolar clearance-to-creatinine clearance ratio was not significantly different between Clcnk1+/- and Clcnk1+/+ mice. Fractional excretion of sodium, chloride, and urea was also not significantly affected in Clcnk1-/- mice. These results indicate that the polyuria observed in Clcnk1-/- mice was water diuresis and not osmotic diuresis. The papillary osmolarity in Clcnk1-/- mice was significantly lower than that in Clcnk1+/+ mice under a hydrated condition, and it did not increase even after water deprivation. Sodium and chloride contents in the inner medulla in Clcnk1-/- mice were at about one-half the levels observed in Clcnk1+/+ mice. Furthermore, the accumulation of urea was also impaired in Clcnk1-/- mice, suggesting that the overall countercurrent system was impaired by a defect of its single component, chloride transport in the tAL. The aldose reductase mRNA abundance in Clcnk1-/- mice was decreased, further evincing that inner medullary tonicity is decreased in Clcnk1-/- mice. We concluded that NDI in Clcnk1-/- mice resulted from an impairment in the generation of inner medullary hypertonicity by a dysfunction of the countercurrent systems.  (+info)

Regulation of potassium channel Kir 1.1 (ROMK) abundance in the thick ascending limb of Henle's loop. (26/308)

The renal outer medullary potassium channel (ROMK) of the thick ascending limb (TAL) is a critical component of the counter-current multiplication mechanism. In this study, two new antibodies raised to ROMK were used to investigate changes in the renal abundance of ROMK with treatments known to strongly promote TAL function. These antibodies specifically recognized protein of the predicted size of 45 kD in immunoblots of rat kidney or COS cells transfected with ROMK cDNA. Infusion of 1-deamino-(8-D-arginine)-vasopressin (dDAVP), a vasopressin V2 receptor-selective agonist, for 7 d into Brattleboro rats resulted in dramatic increases in apical membrane labeling of ROMK in the TAL of dDAVP-treated rats, as assessed by immunocytochemical analyses. Using immunoblotting, a more than threefold increase in immunoreactive ROMK levels was observed in the outer medulla after dDAVP infusion. Restriction of water intake to increase vasopressin levels also significantly increased TAL ROMK immunolabeling and abundance in immunoblots. In addition, dietary Na(+) levels were varied to determine whether ROMK abundance was also affected under other conditions known to alter TAL transport. Rats fed higher levels of sodium, as either NaCl or NaHCO(3) (8 mEq/250 g body wt per d), exhibited significantly increased density of the 45-kD band, compared with the respective control animals. Moreover, in rats fed a low-NaCl diet (0.25 mEq/250 g body wt per d), a 50% decrease in band density for the 45-kD band was observed (relative to control rats fed 2.75 mEq/250 g body wt per d of NaCl). These results demonstrate that long-term adaptive changes in ROMK abundance occur in the TAL with stimuli that enhance transport by this segment.  (+info)

Renal concentrating defect in mice lacking group IV cytosolic phospholipase A(2). (27/308)

Eicosanoids regulate various cellular functions that are important in physiological and pathophysiological processes. Arachidonic acid is released from membranes by phospholipase A(2) (PLA(2)) activity. Activated macrophages derived from mice lacking the 85-kDa group IV cytosolic PLA(2) (cPLA(2)) have a markedly reduced release of prostaglandin E(2) and leukotrienes B(4) and C(4). Under basal conditions and after furosemide, urinary prostaglandin E(2) excretion is reduced in cPLA(2)-knockout (cPLA(2)(-/-)) mice. Serum creatinine, Na(+), K(+), and Ca(2+) concentrations, glomerular filtration rate, and fractional excretion of Na(+) and K(+) are not different in cPLA(2)(-/-) and cPLA(2)(+/+) mice. Maximal urinary concentration is lower in 48-h water-deprived cPLA(2)(-/-) mice compared with cPLA(2)(+/+) animals (1,934 +/- 324 vs. 3,541 +/- 251 mmol/kgH(2)O). Plasma osmolality is higher (337 +/- 5 vs. 319 +/- 3 mmol/kgH(2)O) in cPLA(2)(-/-) mice that lose a greater percentage of their body weight (20 +/- 2 vs. 13 +/- 1%) compared with cPLA(2)(+/+) mice after water deprivation. Vasopressin does not correct the concentrating defect. There is progressive reduction in urinary osmolality with age in cPLA(2)(-/-) mice. Membrane-associated aquaporin-1 (AQP1) expression, identified by immunocytochemical techniques, is reduced markedly in proximal tubules of older cPLA(2)(-/-) animals but is normal in thin descending limbs. However, Western blot analysis of kidney cortical samples revealed an equivalent AQP1 signal intensity in cPLA(2)(+/+) and cPLA(2)(-/-) animals. Young cPLA(2)(-/-) mice have normal proximal tubule AQP1 staining. Collecting duct AQP2, -3, and -4 were normally expressed in the cPLA(2)(-/-) mice. Thus mice lacking cPLA(2) develop an age-related defect in renal concentration that may be related to abnormal trafficking and/or folding of AQP1 in the proximal tubule, implicating cPLA(2) in these processes.  (+info)

Effect of water deprivation and hypertonic saline infusion on urinary AQP2 excretion in healthy humans. (28/308)

Arginine vasopressin (AVP) mediates water transport in the renal collecting ducts by forming water channels of aquaporin-2 (AQP2) in the apical plasma membrane. AQP2 is excreted in human urine. We wanted to test the hypothesis that urinary excretion of AQP2 (u-AQP2) reflects the effect of AVP on the renal collecting ducts during water deprivation and hypertonic saline infusion in healthy subjects. Fifteen healthy subjects underwent a 24-h period of fluid restriction. Urine and blood samples were collected at timed intervals. Fifteen healthy subjects were given 7 ml/kg 3% hypertonic saline infusion for 30 min. Urine and blood samples were collected at timed intervals. During fluid restriction, the u-AQP2 rate increased from 3.9 (25th percentile: 3.1; 75th percentile: 5.2) to 7.6 (5.9-9.1; P < 0.001) ng/min, and the plasma AVP (p-AVP) level increased from 0.5 (0.4-0.6) to 3 (1.7-3.3) pmol/l. There was a positive correlation between the maximum change in u-AQP2 rate and the maximum change in p-AVP (r = 0.57, P < 0.03). During the infusion study, u-AQP2 rate was at maximum 90 min after the infusion [baseline: 4.5 ng/min (3.5-4.8); 90 min: 5 ng/min (4.5-6.0) P < 0.02]. p-AVP increased from 1.0 (0.9-1.1) to 1.5 (1.2-1.8; P < 0.002) pmol/l. There was a positive correlation between the maximum change in u-AQP2 rate and the maximum change in p-AVP (r = 0.83; P < 0.0001). It can be concluded that p-AVP and u-AQP2 are increased during thirst and hypertonic saline infusion and that u-AQP2 reflects the action of AVP on the collecting ducts.  (+info)

Renal phenotype of low kallikrein rats. (29/308)

BACKGROUND: Renal kallikrein has been linked with inheritance of arterial hypertension and with sensitivity to drug nephrotoxicity. Identification of a cause--effect relationship between low kallikrein and intermediate phenotypes has been hampered by the lack of adequate animal models. METHODS: Kallikrein was measured in tissues obtained from rats inbred for low urinary kallikrein excretion (LKR) and wild-type controls. Blood pressure and indices of myocardial contractility were recorded via an intraventricular cannula connected to a transducer. The functional relevance of endogenous angiotensin II (Ang II) in LKR was explored by determining the effect of Ang II subtype 1 (AT(1)) receptor blockade on glomerular filtration rate, renal blood flow, and urinary sodium excretion. In addition, sensitivity to gentamycin-induced nephrotoxicity was evaluated. RESULTS: Kallikrein activity was reduced by 60% in the kidney of LKR (P < 0.01), whereas it was increased in the heart (P < 0.05) and was unaltered in the pancreas, liver, and salivary glands. Heart rate and myocardial contractility were reduced, and the mean blood pressure (MBP) was increased in LKR as compared with controls (P < 0.05). LKR exhibited polydipsia, polyuria, glomerular hyperfiltration, and reduced fractional sodium excretion under basal conditions and impaired renal vasodilation in response to volume expansion. These functional alterations were significantly attenuated by AT(1) receptor blockade. Gentamycin reduced the glomerular filtration rate in LKR, but not in controls. CONCLUSIONS: In LKR, unopposed activity of Ang II appears to be responsible for increased glomerular hydrostatic pressure and augmented tubular reabsorption. Balance between the kallikrein-kinin and renin-angiotensin systems is essential for normal renal function.  (+info)

Acute opioid pretreatment potentiates naltrexone-induced drinking suppression in water-deprived rats. (30/308)

Pretreatment with morphine-like agonists potentiates the behavioral effects of opioid antagonists, possibly reflecting a state of acute physical dependence. Several studies have used operant behavior to quantify these effects. However, little research has been done using unconditioned behavior. One objective of this study was to determine whether opioid agonist pretreatment (e.g., morphine, fentanyl, and meperidine) potentiated naltrexone-induced suppression of water consumption following deprivation. Another objective was to determine whether the agonist pretreatment interval was functionally related to efficacy for the manifestation of acute dependence. Finally, we compared temporally the effects of the three agonists. Adult male Sprague-Dawley rats were water deprived for 18, 20, or 22 h and given an injection (s.c.) of an agonist or saline. After 1.75, 3.75, or 5.75 h, animals received a single dose (s.c.) of naltrexone (0.01-30 mg/kg) or saline. Fifteen minutes later, subjects had access to water for 30 min. A time course of antinociception was constructed after agonist administration, using the tail-flick procedure. All three agonists dose dependently potentiated naltrexone-induced drinking suppression, decreasing the ED50 of naltrexone by as much as 150-fold. There was no clear relationship between agonist efficacy and pretreatment interval. Sensitization to naltrexone was seen up to 6 h after agonist administration, occurring in the apparent absence of an antinociceptive effect. These data extend the range of behavioral effects of opioid antagonists potentiated by opioid agonist pretreatment to suppression of drinking and show that such potentiation can occur in the absence of a prototypical agonist effect.  (+info)

The relationship between elevated water intake and oedema associated with congestive cardiac failure in the dog. (31/308)

1. In the dog constriction of the thoracic region of the inferior vena cava increases water intake and extracellular and plasma fluid volumes. 2. Restriction of water intake to the pre-operative level for 2 weeks reduces the measured extracellular fluid volume to the pre-operative level. 3. Administration of the competitive angiotensin inhibitor, saralasin acetate, to two dogs in congestive cardiac failure following thoracic caval constriction markedly reduced their water intake. 4. These results suggest that increased fluid intake is probably important in the aetiology of the oedema associated with congestive cardiac failure, probably through the renin-angiotensin system.  (+info)

Hyperosmolality activates Akt and regulates apoptosis in renal tubular cells. (32/308)

BACKGROUND: The novel serine-threonine kinase Akt is a critical enzyme in cell survival. We investigated the roles of the Akt pathway and apoptotic signals in (1) Madin-Darby canine kidney (MDCK) cells in a hyperosmotic condition in vitro and (2) in the inner medulla of dehydrated rat in vivo. METHODS: The in vivo experiments were performed in 24- and 48-hour water-restricted rats. Hyperosmolality-stimulated Akt phosphorylation was examined in MDCK cells. Phosphatidylinositol 3-kinase (PI3-K) inhibitors, the dominant-negative mutant of PI3-K, the dominant-negative mutant of Akt, and the dominant-active form of Akt were used to examine the roles of the PI3-K/Akt pathways in renal tubular cell apoptosis. RESULTS: The amount of phosphorylated Akt protein was increased in the inner medulla of dehydrated rats. Hyperosmolality induced by the addition of NaCl, urea, and raffinose phosphorylated Akt in MDCK cells in an osmolality-dependent manner. PI3-K inhibitors and the dominant-negative mutant of PI3-K inhibited the hyperosmolality-induced phosphorylation of Akt. Raising the media osmolality from a normal level to 500 or 600 mOsm/kg H2O final osmolality elicited apoptotic changes such as nucleosomal laddering of DNA and an increment of caspase-3 activity and increased activity in the cell death enzyme-linked immunosorbent assay. Dominant-active Akt prevented the mild hyperosmolality-induced apoptosis, while inhibition of the PI3-K/Akt pathways promoted apoptosis. CONCLUSION: The Akt pathway is activated by hyperosmolality in vitro and in vivo, and activation of Akt prevents the mild hyperosmolality-induced apoptotic changes in MDCK cells. PI3-K/Akt pathways are involved in a hypertonic condition that confers the balance between cell survival and apoptosis.  (+info)