Molecular genetic diversity and evolution at the MHC DQB locus in four species of pinnipeds. (1/80)

Variation was investigated at exon 2 (including part of the putative peptide-binding region) of the class II major histocompatibility complex (MHC) DQB locus for two congeneric phocid seal species and two congeneric otariid seal species. Polymorphism in one phocid species, the southern elephant seal (Mirounga leonina), was comparable to that seen in human populations, while the other phocid, the northern elephant seal (Mirounga angustirostris), has been through a severe population bottleneck and exhibited much less variation at this locus. A phylogenetic comparison of the four species was consistent with the trans-specific pattern of evolution described for other taxa at this locus, and relative nonsynonymous and synonymous substitution rates suggest the maintenance of polymorphisms by natural selection. A comparison of sequence patterns also suggested that some variation could have been generated through recombinational events, primarily within genera. These results suggest a pattern of evolution of the immune response in pinnipeds similar to that in terrestrial mammal species.  (+info)

Monoclonal antibody-based competitive enzyme-linked immunosorbent assay for detection of morbillivirus antibody in marine mammal sera. (2/80)

A competitive enzyme-linked immunosorbent assay (cELISA), using two monoclonal antibodies (MAbs), was developed and compared with the standard virus neutralization test (VNT) for detecting antibodies against canine distemper virus (CDV) and phocine distemper virus (PDV) in sera from dogs and various species of marine mammals. The test depends on the blocking of MAb binding to solid-phase antigen in the presence of positive serum. Test conditions were optimized by using control VNT-negative and -positive sera specific for CDV and PDV. A positive cutoff value of 30% inhibition, which represents the mean cutoff of a VNT-negative population (n = 623) plus 2 standard deviations, was adopted for the test. A total of 736 serum samples were tested by the new cELISA and by the VNT as the "gold standard." An unexpected but useful finding was the ability of this CDV- and PDV-specific cELISA to also detect antibodies against the related pair dolphin morbillivirus and porpoise morbillivirus. Based on a subpopulation of 625 sera used in statistical analyses, the overall sensitivity and specificity of cELISA relative to those of the VNT were 94.9 and 97.7%, respectively. Because the cELISA proved to be nearly as sensitive and specific as the VNT while being simpler and more rapid, it would be an adequate screening test for suspect CDV or PDV cases and would also be useful for epidemiological surveillance of morbilliviral infections in marine mammal populations.  (+info)

From the discovery of the Malta fever's agent to the discovery of a marine mammal reservoir, brucellosis has continuously been a re-emerging zoonosis. (3/80)

Brucellosis is not a sustainable disease in humans. The source of human infection always resides in domestic or wild animal reservoirs. The routes of infection are multiple: food-borne, occupational or recreational, linked to travel and even to bioterrorism. New Brucella strains or species may emerge and existing Brucella species adapt to changing social, cultural, travel and agricultural environment. Brucella melitensis is the most important zoonotic agent, followed by Brucella abortus and Brucella suis. This correlates with the fact that worldwide, the control of bovine brucellosis (due to B. abortus) has been achieved to a greater extent than the control of sheep and goat brucellosis (due to B. melitensis), these latter species being the most important domestic animals in many developing countries. The long duration and high cost of treatment of human brucellosis reduces the efficacy of the therapy. There is no human vaccine for brucellosis and the occurrence of brucellosis is directly linked to the status of animal brucellosis in a region. In this context, the Word Health Organization has defined the development of a human vaccine, besides the implementation of control and eradication programs in animals, as a high priority. The pathogenicity for humans of B. suis biovars 1, 3 and 4 is well established, whereas B. suis biovar 2 seems to be less pathogenic. Indeed, although hunters and pig farmers have repeatably experienced infectious contact with B. suis biovar 2 (found in wild boar and outdoor-rearing pigs in Europe), isolation of B. suis biovar 2 from human samples have only been seldom reported. Marine mammal brucellosis, due to two new proposed Brucella species i.e. B. cetaceae and B. pinnipediae, represents a new zoonotic threat but the pathogenicity for humans of the different Brucella species found in cetaceans and pinnipeds still has to be clearly established.  (+info)

Nature of adenosine triphosphatase accelerating peptide from hydrolysate of fur seal muscle. (4/80)

Ultrafiltered fur seal muscle hydrolysate was divided into eleven fractions by gel filtration on Sephadex G-15. One of the fractions (Fraction G9) accelerated the ATPase activity of carp myosin B to a rate about two-fold faster than that of the control. Fraction G9 showed a single ninhydrin spot in its silica gel thin layer chromatograph, and gave a positive test for tryptophan by the p-dimethylaminobenzaldehyde method, while tests for tyrosine, and for arginine were negative. The ion exchange amino acid analysis of its acid hydrolysate showed a predominant content of lysine, nearly equivalent to the amount of tryptophan determined from its UV absorbancy and the p-dimethylaminobenzaldehyde method. The N-terminal amino acid analysis gave di-DNP-Lys as the sole DNP-amino acid. The structure of the ATPase accelerating peptide fraction, Fraction G9, was deduced to be Lys-Trp.  (+info)

Tolerance to low O2: lessons from invertebrate genetic models. (5/80)

There have been extensive studies and experiments on cells, tissues and animals that are susceptible to low O2, and many pathways have been discovered that can lead to injury in mammalian tissues. But other pathways that can help in the survival of low O2 have also been discovered in these same tissues. It should be noted, however, that the mechanisms that can lead to better survival in susceptible mammalian tissues have quantitatively a 'narrow range' for recovery, since these tissues are inherently at risk. Another strategy for understanding the susceptibility of organisms is to learn about pathways used by anoxia-resistant animals. Approximately a decade ago, I and my co-workers discovered that one such animal, Drosophila melanogaster, is very tolerant of low O2. Here, I detail some of the studies that we performed and the strategies that we developed to understand the mechanisms that underlie the fascinating resistance of Drosophila to measured partial pressure of O2 of zero. We employed three ideas to try to address our questions: (1) mutagenesis screens to identify loss-of-function mutants; (2) microarrays on adapted versus naive flies; and (3) studying cell biology and physiology of genes that seem important in flies and mammals. The hope is to learn from these studies about the fundamental basis of tolerance to the lack of O2, and with this knowledge be able to develop better therapies for the future.  (+info)

Marine mammal neoplasia: a review. (6/80)

A review of the published literature indicates that marine mammal neoplasia includes the types and distributions of tumors seen in domestic species. A routine collection of samples from marine mammal species is hampered, and, hence, the literature is principally composed of reports from early whaling expeditions, captive zoo mammals, and epizootics that affect larger numbers of animals from a specific geographic location. The latter instances are most important, because many of these long-lived, free-ranging marine mammals may act as environmental sentinels for the health of the oceans. Examination of large numbers of mortalities reveals incidental proliferative and neoplastic conditions and, less commonly, identifies specific malignant cancers that can alter population dynamics. The best example of these is the presumptive herpesvirus-associated metastatic genital carcinomas found in California sea lions. Studies of tissues from St. Lawrence estuary beluga whales have demonstrated a high incidence of neoplasia and produced evidence that environmental contamination with high levels of polychlorinated biphenols and dichlorophenyl trichloroethane might be the cause. In addition, viruses are suspected to be the cause of gastric papillomas in belugas and cutaneous papillomas in Florida manatees and harbor porpoises. While experimental laboratory procedures can further elucidate mechanisms of neoplasia, continued pathologic examination of marine mammals will also be necessary to follow trends in wild populations.  (+info)

Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. (7/80)

It is obvious, at least qualitatively, that small animals move their locomotory apparatus faster than large animals: small insects move their wings invisibly fast, while large birds flap their wings slowly. However, quantitative observations have been difficult to obtain from free-ranging swimming animals. We surveyed the swimming behaviour of animals ranging from 0.5 kg seabirds to 30 000 kg sperm whales using animal-borne accelerometers. Dominant stroke cycle frequencies of swimming specialist seabirds and marine mammals were proportional to mass(-0.29) (R(2)= 0.99, n = 17 groups), while propulsive swimming speeds of 1-2 m s(-1) were independent of body size. This scaling relationship, obtained from breath-hold divers expected to swim optimally to conserve oxygen, does not agree with recent theoretical predictions for optimal swimming. Seabirds that use their wings for both swimming and flying stroked at a lower frequency than other swimming specialists of the same size, suggesting a morphological trade-off with wing size and stroke frequency representing a compromise. In contrast, foot-propelled diving birds such as shags had similar stroke frequencies as other swimming specialists. These results suggest that muscle characteristics may constrain swimming during cruising travel, with convergence among diving specialists in the proportions and contraction rates of propulsive muscles.  (+info)

Adaptive features of aquatic mammals' eye. (8/80)

The eye of aquatic mammals demonstrates several adaptations to both underwater and aerial vision. This study offers a review of eye anatomy in four groups of aquatic animals: cetaceans (toothed and baleen whales), pinnipeds (seals, sea lions, and walruses), sirenians (manatees and dugongs), and sea otters. Eye anatomy and optics, retinal laminar morphology, and topography of ganglion cell distribution are discussed with particular reference to aquatic specializations for underwater versus aerial vision. Aquatic mammals display emmetropia (i.e., refraction of light to focus on the retina) while submerged, and most have mechanisms to achieve emmetropia above water to counter the resulting aerial myopia. As underwater vision necessitates adjusting to wide variations in luminosity, iris muscle contractions create species-specific pupil shapes that regulate the amount of light entering the pupil and, in pinnipeds, work in conjunction with a reflective optic tapetum. The retina of aquatic mammals is similar to that of nocturnal terrestrial mammals in containing mainly rod photoreceptors and a minor number of cones (however, residual color vision may take place). A characteristic feature of the cetacean and pinniped retina is the large size of ganglion cells separated by wide intercellular spaces. Studies of topographic distribution of ganglion cells in the retina of cetaceans revealed two areas of ganglion cell concentration (the best-vision areas) located in the temporal and nasal quadrants; pinnipeds, sirenians, and sea otters have only one such area. In general, the visual system of marine mammals demonstrates a high degree of development and several specific features associated with adaptation for vision in both the aquatic and aerial environments.  (+info)