Selective stimulation of hepatitis C virus and pestivirus NS5B RNA polymerase activity by GTP. (1/119)

NS5B of the hepatitis C virus is an RNA template-dependent RNA polymerase and therefore the key player of the viral replicase complex. Using a highly purified enzyme expressed with recombinant baculoviruses in insect cells, we demonstrate a stimulation of RNA synthesis up to 2 orders of magnitude by high concentrations of GTP but not with ATP, CTP, UTP, GDP, or GMP. Enhancement of RNA synthesis was found with various heteropolymeric RNA templates, with poly(C)-oligo(G)12 but not with poly(A)-oligo(U)12. Several amino acid substitutions in polymerase motifs B, C, and D previously shown to be crucial for RdRp activity were tested for GTP stimulation of RNA synthesis. Most of these mutations, in particular those affecting the GDD motif (motif C) strongly reduced or completely abolished activation by GTP, suggesting that the same NTP-binding site is used for stimulation and RNA synthesis. Since GTP did not affect the overall RNA binding properties or the elongation rate, high concentrations of GTP appear to accelerate a rate-limiting step at the level of initiation of RNA synthesis. Finally, enhancement of RNA synthesis by high GTP concentrations was also found with NS5B of the pestivirus classical swine fever virus, but not with the 3D polymerase of poliovirus. Thus, stimulation of RdRp activity by GTP is evolutionarily conserved between the closely related hepaciviruses and pestiviruses but not between these and the more distantly related picornaviruses.  (+info)

Typing of bovine viral diarrhea viruses directly from blood of persistently infected cattle by multiplex PCR. (2/119)

A nested multiplex PCR was developed for genotyping of bovine viral diarrhea viruses (BVDVs). The assay could detect as little as 3 50% tissue culture infective doses of BVDV per ml and typed 42 out of 42 cell culture isolates. BVDV was also successfully typed, with or without RNA extraction, from all 27 whole-blood samples examined from 22 carriers or probable carriers and 5 experimentally infected cattle.  (+info)

Oxidative stress in cells infected with bovine viral diarrhoea virus: a crucial step in the induction of apoptosis. (3/119)

Bovine viral diarrhoea virus (BVDV) belongs to the genus Pestivirus of the family Flaviviridae. Both a noncytopathic (ncp) and an antigenically related cytopathic (cp) BVDV can be isolated from persistently infected animals suffering from mucosal disease. In every case studied so far, the genomic changes leading to the cp biotype correlate with the production of the NS3 nonstructural protein, which, in the ncp biotype, is present in its uncleaved form, NS23. This report shows that, in contrast to ncp BVDV, the cp biotype induces apoptosis in cultured embryonic bovine turbinate cells. Early in the process of apoptosis, cells show a rise in the intracellular level of reactive oxygen species, which is indicative of oxidative stress. This precedes two hallmarks of apoptosis, caspase activation as shown by cleavage of the caspase substrate poly(ADP-ribose) polymerase, and DNA fragmentation. Cells were protected from apoptosis only by certain antioxidants (butylated hydroxyanisole and ebselen), whereas others (N-acetylcysteine, pyrrolidine dithiocarbamate, lipoic acid, dihydrolipoic acid and tiron) turned out to be ineffective. Antioxidants that protected cells from apoptosis prevented oxidative stress but failed to block virus growth. These observations suggest that oxidative stress, which occurs early in the interaction between cp BVDV and its host cell, may be a crucial event in the sequence leading to apoptotic cell death. Hence, apoptosis is not required for the multiplication of the cp biotype of BVDV.  (+info)

Genetic diversity of pestiviruses: identification of novel groups and implications for classification. (4/119)

The complete Npro coding sequences were determined for 16 pestiviruses isolated from cattle, pig, and several wild ruminant species including reindeer, bison, deer, and bongo. Phylogenetic analysis enabled the segregation of pestiviruses into the established species bovine viral diarrhea virus-1 (BVDV-1), BVDV-2, border disease virus (BDV), and classical swine fever virus (CSFV). For BVDV-1 five distinct subgroups were identified, while BVDV-2, BDV, and CSFV were each subdivided into two subgroups. The virus isolates from bongo and deer as well as one porcine virus isolate belong to BVDV-1. Interestingly, the isolates from reindeer and bison are distinct from the established pestivirus species. The Npro sequences from these two viruses are more similar to BDV than to the other pestivirus species. Calculation of the pairwise evolutionary distances allowed a clear separation of the categories species, subgroup, and isolate only when the reindeer/bison viruses were considered as members of an additional pestivirus species. Furthermore, the entire E2 coding sequences of a representative set of virus isolates covering all recognized species and subgroups were studied. Segregation of pestiviruses based on the E2 region was identical with that obtained with the N(pro) sequences.  (+info)

Imino sugars inhibit the formation and secretion of bovine viral diarrhea virus, a pestivirus model of hepatitis C virus: implications for the development of broad spectrum anti-hepatitis virus agents. (5/119)

One function of N-linked glycans is to assist in the folding of glycoproteins by mediating interactions of the lectin-like chaperone proteins calnexin and calreticulin with nascent glycoproteins. These interactions can be prevented by inhibitors of the alpha-glucosidases, such as N-butyl-deoxynojirimycin (NB-DNJ) and N-nonyl-DNJ (NN-DNJ), and this causes some proteins to be misfolded and retained within the endoplasmic reticulum (ER). We have shown previously that the NN-DNJ-induced misfolding of one of the hepatitis B virus (HBV) envelope glycoproteins prevents the formation and secretion of virus in vitro and that this inhibitor alters glycosylation and reduces the viral levels in an animal model of chronic HBV infection. This led us to investigate the effect of glucosidase inhibitors on another ER-budding virus, bovine viral diarrhea virus, a tissue culture surrogate of human hepatitis C virus (HCV). Here we show that in MDBK cells alpha-glucosidase inhibitors prevented the formation and secretion of infectious bovine viral diarrhea virus. Data also are presented showing that NN-DNJ, compared with NB-DNJ, exhibits a prolonged retention in liver in vivo. Because viral secretion is selectively hypersensitive to glucosidase inhibition relative to the secretion of cellular proteins, the possibility that glucosidase inhibitors could be used as broad-based antiviral hepatitis agents is discussed. A single drug against HBV, HCV, and, possibly, HDV, which together chronically infect more than 400 million people worldwide, would be of great therapeutic value.  (+info)

Germinal centre localization of bovine viral diarrhoea virus in persistently infected animals. (6/119)

Immunohistochemical analysis of peripheral lymph nodes from gnotobiotic calves persistently infected with bovine viral diarrhoea virus (BVDV) revealed extensive deposition of E(rns) and localization of the viral genome in the light zone of germinal centres. Viral antigen co-localized with immunoglobulin in the germinal centres and was shown to be extracellular. Despite the presence of viral antigen in germinal centres, circulating anti-BVDV antibody was not detected. These findings provide evidence that calves persistently infected with BVDV, in the absence of adventitious infection, can generate a B cell response to the persisting virus. The nature of the tolerance in calves persistently infected with BVDV is discussed in light of these findings.  (+info)

Mechanism of action of a pestivirus antiviral compound. (7/119)

We report here the discovery of a small molecule inhibitor of pestivirus replication. The compound, designated VP32947, inhibits the replication of bovine viral diarrhea virus (BVDV) in cell culture at a 50% inhibitory concentration of approximately 20 nM. VP32947 inhibits both cytopathic and noncytopathic pestiviruses, including isolates of BVDV-1, BVDV-2, border disease virus, and classical swine fever virus. However, the compound shows no activity against viruses from unrelated virus groups. Time of drug addition studies indicated that VP32947 acts after virus adsorption and penetration and before virus assembly and release. Analysis of viral macromolecular synthesis showed VP32947 had no effect on viral protein synthesis or polyprotein processing but did inhibit viral RNA synthesis. To identify the molecular target of VP32947, we isolated drug-resistant (DR) variants of BVDV-1 in cell culture. Sequence analysis of the complete genomic RNA of two DR variants revealed a single common amino acid change located within the coding region of the NS5B protein, the viral RNA-dependent RNA polymerase. When this single amino acid change was introduced into an infectious clone of drug-sensitive wild-type (WT) BVDV-1, replication of the resulting virus was resistant to VP32947. The RNA-dependent RNA polymerase activity of the NS5B proteins derived from WT and DR viruses expressed and purified from recombinant baculovirus-infected insect cells confirmed the drug sensitivity of the WT enzyme and the drug resistance of the DR enzyme. This work formally validates NS5B as a target for antiviral drug discovery and development. The utility of VP32947 and similar compounds for the control of pestivirus diseases, and for hepatitis C virus drug discovery efforts, is discussed.  (+info)

Enzyme-linked immunosorbent assay using a virus type-specific peptide based on a subdomain of envelope protein E(rns) for serologic diagnosis of pestivirus infections in swine. (8/119)

Peptides deduced from the C-terminal end (residues 191 to 227) of pestivirus envelope protein E(rns) were used to develop enzyme-linked immunosorbent assays (ELISAs) to measure specifically antibodies against different types of pestiviruses. The choice of the peptide was based on the modular structure of the E(rns) protein, and the peptide was selected for its probable independent folding and good exposure, which would make it a good candidate for an antigenic peptide to be used in a diagnostic test. A solid-phase peptide ELISA which was cross-reactive for several types of pestivirus antibodies and which can be used for the general detection of pestivirus antibodies was developed. To identify type-specific pestivirus antibodies, a liquid-phase peptide ELISA, with a labeled, specific classical swine fever virus (CSFV) peptide and an unlabeled bovine viral diarrhea virus peptide to block cross-reactivity, was developed. Specificity and sensitivity of the liquid-phase peptide ELISA for CSFV were 98 and 100%, respectively. Because the peptide is a fragment of the E(rns) protein, it can be used to differentiate between infected and vaccinated animals when a vaccine based on the E2 protein, which is another pestivirus envelope protein, is used.  (+info)