Acute oxidative stress modulates secretion and repetitive Ca2+ spiking in rat exocrine pancreas. (65/6670)

The effects of the oxidant tert-butylhydroperoxide (t-buOOH) on carbachol-stimulated pancreatic secretion in the vascularly perfused rat pancreas have been studied in parallel with [Ca2+]i signalling and amylase output in perifused rat pancreatic acinar cells. Perfusion of the pancreas with t-buOOH (0.1-1 mM) caused a rapid and irreversible inhibition of carbachol-stimulated (3x10-7 M) amylase and fluid secretion. Pre-perfusion of the pancreas with vitamin C and dithiothreitol or a cocktail of GSH and GSH-precursor amino acids provided only marginal protection against the deleterious effects of t-buOOH, even though GSH levels were elevated significantly. In perifused pancreatic acini, repetitive [Ca2+]i spikes evoked by carbachol (3x10-7 M) were sustained for 40 min. t-buOOH (1 mM) acutely increased the amplitude and duration of Ca2+ spikes, then attenuated Ca2+ spiking and subsequently caused a marked and sustained rise in [Ca2+]i. t-buOOH-induced alterations in carbachol-stimulated [Ca2+]i signalling and amylase release in perifused pancreatic acini were prevented by vitamin C. Although vitamin C restored impaired Ca2+ signalling and maintained amylase output in pancreatic acini, it seems likely that oxidative stress inhibits fluid secretion irreversibly in the intact pancreas, resulting in a loss of amylase output. Thus, perturbations in [Ca2+]i signalling may not fully explain the secretory block caused by oxidative stress in acute pancreatitis.  (+info)

Enthacrynic and acid effects on inner wall pores in living monkeys. (66/6670)

PURPOSE: The influence of the inner wall of Schlemm's canal on aqueous outflow facility remains poorly understood. We examined the relationship between inner wall pore characteristics and outflow facility in living primate eyes in which facility had been pharmacologically increased by ethacrynic acid (ECA) infusion and in contralateral control eyes. METHODS: Outflow facility (two-level constant pressure perfusion) was measured in eight pairs of living monkey eyes before and after administration of a bolus dose of either 0.125 mM ECA or vehicle. After exsanguination, eyes were fixed in situ under constant-pressure conditions (mean fixation pressure approximately 19 mm Hg). The density and diameter of inner wall pores and the number and area of platelet aggregates on the inner wall of Schlemm's canal were measured by scanning electron microscopy. RESULTS: In ECA-treated eyes, outflow facility increased 63% (P < 0.0001), intracellular pore density decreased 46% (P = 0.0094), intracellular pore size increased 27% (P = 0.049), platelet aggregate density increased 158% (P < 0.0001), and area covered by platelets increased 210% (P = 0.012) relative to contralateral controls. Although the average density and size of intercellular pores were essentially unaffected by ECA, an increased density of large (> or = 1.90 microm) intercellular pores was seen in ECA-treated eyes. The density of intracellular pores increased with the duration of fixative perfusion. Other than a weak negative correlation between outflow facility and intracellular pore density in ECA-treated eyes (P = 0.052), facility was not correlated with inner wall pore features. CONCLUSIONS: Our data are most consistent with a scenario in which ECA promotes formation of large intercellular pores in the inner wall of Schlemm's canal, which are then masked by platelet aggregates. Masking of intercellular pores, combined with fixation-induced alteration of inner wall pore density, greatly complicates attempts to relate facility to inner wall structure and suggests that in vivo pore density is smaller than in fixed tissue. Additionally, facility-influencing effects of ECA on the juxtacanalicular tissue cannot be excluded.  (+info)

Effects of ethacrynic acid on Schlemm's canal inner wall and outflow facility in human eyes. (67/6670)

PURPOSE: The role of the inner wall of Schlemm's canal in determining aqueous outflow facility is poorly understood. To quantify the relationship between inner wall pore characteristics and aqueous outflow facility in human eyes, both control eyes and eyes in which facility had been pharmacologically increased by ethacrynic acid (ECA) infusion were studied. METHODS: Outflow facility was measured in enucleated human eyes before and after delivery of 0.25 mM ECA (one eye of each of 6 pairs) or 2.5 mM ECA (one eye of each of 13 pairs). ECA, and vehicle in contralateral eyes, was delivered into Schlemm's canal by retroperfusion, thereby largely avoiding drug exposure to the trabecular meshwork. After facility measurement, eyes were fixed under conditions of either constant pressure (physiological intraocular pressure, 13 pairs) or "equal flow" (6 pairs) and were microdissected to expose the inner wall of Schlemm's canal. The density and diameter of intercellular and intracellular inner wall pores were measured using scanning electron microscopy. RESULTS: Retroperfusion with 2.5 mM ECA increased facility by 73% (P < 0.001), whereas 0.25 mM ECA increased facility by 19% (not statistically significant). The density of intercellular pores in the inner wall of Schlemm's canal was increased by 520% in 2.5 mM ECA-retroperfused eyes (P < 0.00004), whereas intracellular pore density remained approximately constant. Large pores (size > or = 1.1 microm) were particularly enhanced in ECA retroperfused eyes. The net change in facility due to ECA was not correlated with changes in pore density or other inner wall pore statistics. CONCLUSIONS: Our data are most consistent with a model in which pores in the inner wall of Schlemm's canal indirectly influence facility. However, measured changes in facility due to changes in inner wall properties did not agree with quantitative predictions of the pore funneling theory, suggesting that changes in facility may instead be due to gel leakage from the extracellular spaces of the juxtacanalicular tissue. More definitive experiments are required to confirm this hypothesis.  (+info)

Effects of imipramine, an uptake inhibitor, on double-peaked constrictor responses to periarterial nerve stimulation in isolated, perfused canine splenic arteries. (68/6670)

Using a cannula insertion method, periarterial nerve electrical stimulations were performed at 1 and 10 Hz in the isolated, perfused canine splenic artery. Electrical nerve stimulation readily caused double-peaked vasoconstrictions. The 1st-peak response at 1 Hz was not influenced by treatment with imipramine but the 2nd one was significantly enhanced by it. The 2nd-peak response was markedly blocked by prazosin. An additional treatment with alpha,beta-methylene ATP, a P2X-purinoceptor desensitizer, abolished electrical stimulation-induced vascular responses that remained. At 10 Hz, the responses to electrical stimulation were not significantly influenced by imipramine. On the other hand, the imipramine treatment inhibited the tyramine-induced vasoconstriction but potentiated the noradrenaline-induced one. ATP-induced responses were not modified by imipramine. From these results, it is concluded that 1) the 1st-peaked constriction is mainly due to a P2X-purinoceptor-dependent mechanism, 2) the 2nd one is mainly due to an alpha1-adrenoceptor-dependent mechanism, and 3) presynaptic uptake mechanisms may perform an important role in the regulation of vascular reactivity, especially at a low frequency.  (+info)

Clinical validation of intravascular ultrasound imaging for assessment of coronary stenosis severity: comparison with stress myocardial perfusion imaging. (69/6670)

OBJECTIVES: To validate intravascular ultrasound (IVUS) measurements for differentiating functionally significant from nonsignificant coronary stenosis. BACKGROUND: To date, there are no validated criteria for the definition of a flow-limiting coronary artery stenosis by IVUS. METHODS: Preinterventional IVUS imaging (30-MHz imaging catheter) of 70 de novo coronary lesions was performed. The lesion lumen area and three IVUS-derived stenosis indixes comparing lesion lumen area with the lesion external elastic lamina (EEL) area, the mean reference lumen area and the mean reference EEL area were compared with the results of stress myocardial perfusion imaging. RESULTS: The lesion lumen area and three IVUS-derived stenosis indexes showed sensitivities and specificities ranging between 80% and 90% using stress myocardial perfusion imaging as the gold standard. The lesion lumen area < or =4 mm2 is a simple and highly accurate criterion for significant coronary narrowing. CONCLUSIONS: Quantitative IVUS indices can be reliably used for identifying significant epicardial coronary artery stenoses.  (+info)

Regulation of total mitochondrial Ca2+ in perfused liver is independent of the permeability transition pore. (70/6670)

Triggering of the permeability transition pore (PTP) in isolated mitochondria causes release of matrix Ca2+, ions, and metabolites, and it has been proposed that the PTP mediates mitochondrial Ca2+ release in intact cells. To study the role of the PTP in mitochondrial energy metabolism, the mitochondrial content of Ca2+, Mg2+, ATP, and ADP was determined in hormonally stimulated rat livers perfused with cyclosporin A (CsA). Stimulation of livers perfused in the absence of CsA with glucagon and phenylephrine induced an extensive uptake of Ca2+, Mg2+, and ATP plus ADP by the mitochondria, followed by a release on omission of hormones. In the presence of CsA, the PTP was fully inhibited, but neither the hormone-induced uptake of Ca2+, ATP, or ADP by mitochondria nor their release after washout of hormones was significantly changed. We conclude that the regulation of sustained changes in mitochondrial Ca2+ content induced by hormonal stimulation is independent of the PTP.  (+info)

The role of Na+-H+ exchange in fluid and solute transport in the rat efferent ducts. (71/6670)

In vivo microperfusion techniques were used to investigate the role of Na+-H+ exchange in the efferent ducts of the rat. Individual efferent ducts were perfused with a Krebs-Ringer bicarbonate solution (KRB) containing 0, 1, 3, 5 or 7.5 mM amiloride. Concentrations of 1-5 mM amiloride inhibited fluid reabsorption from the efferent ducts in a linear dose-dependent manner with an apparent Km of 3 mM. Inhibition was maximal at 5 mM with reabsorption reduced by about 70 %. The effects of amiloride were completely reversible and there was little effect of amiloride on luminal osmolality and concentrations of Na+, Cl- or K+. It is concluded that Na+-H+ exchange is one of the principal mechanisms responsible for fluid and electrolyte reabsorption in the efferent ducts and offers a means by which the efferent ducts are able to achieve flow-dependent, autoregulated fluid reabsorption.  (+info)

Localization of lipoprotein lipase in the diabetic heart: regulation by acute changes in insulin. (72/6670)

Vascular endothelium-bound lipoprotein lipase (LPL) is rate limiting for free fatty acid (FFA) transport into tissues. In streptozotocin (STZ)-diabetic rats, we have previously demonstrated an increased heparin-releasable LPL activity from perfused hearts. Because heparin can traverse the endothelial barrier, conventional Langendorff retrograde perfusion of the heart with heparin could release LPL from both the capillary luminal and abluminal surfaces. To determine the precise location of the augmented LPL, a modified Langendorff retrograde perfusion was used to isolate the enzyme at the coronary lumen from that in the interstitial effluent. In response to heparin, a 4-fold increase in LPL activity and protein mass was observed in the coronary perfusate after 2 weeks of STZ diabetes. Release of LPL activity into the interstitial fluid of control hearts was slow but progressive, whereas in diabetic hearts, peak enzyme activity was observed within 1 to 2 minutes after heparin, followed by a gradual decline. Immunohistochemical studies of myocardial sections confirmed that the augmented LPL in diabetic hearts was mainly localized at the capillary endothelium. To study the acute effects of insulin on endothelial LPL activity, we examined rat hearts at various times after the onset of hyperglycemia. An increased heparin-releasable LPL activity in diabetic rats was demonstrated shortly (6 to 24 hours) after STZ injection or after withdrawal from exogenous insulin. Heparin-releasable coronary LPL activity was also increased after an overnight fast. These studies indicate that the intravascular heparin-releasable fraction of cardiac LPL activity is acutely regulated by short-term changes in insulin rather than glucose. Thus, during short periods (hours) of hypoinsulinemia, increased LPL activity at the capillary endothelium can increase the delivery of FFAs to the heart. The resultant metabolic changes could induce the subsequent cardiomyopathy that is observed in the chronic diabetic rat.  (+info)