Extinction of responding maintained by timeout from avoidance. (1/917)

The resistance to extinction of lever pressing maintained by timeout from avoidance was examined. Rats were trained under a concurrent schedule in which responses on one lever postponed shock on a free-operant avoidance (Sidman) schedule (response-shock interval = 30 s) and responses on another lever produced 2 min of signaled timeout from avoidance on a variable-ratio 15 schedule. Following extended training (106 to 363 2-hr sessions), two experiments were conducted. In Experiment 1 two different methods of extinction were compared. In one session, all shocks were omitted, and there was some weakening of avoidance but little change in timeout responding. In another session, responding on the timeout lever was ineffective, and under these conditions timeout responding showed rapid extinction. The within-session patterns produced by extinction manipulations were different than the effects of drugs such as morphine, which also reduces timeout responding. In Experiment 2 shock was omitted for many consecutive sessions. Response rates on the avoidance lever declined relatively rapidly, with noticeable reductions within 5 to 10 sessions. Extinction of the timeout lever response was much slower than extinction of avoidance in all 4 rats, and 2 rats continued responding at baseline levels for more than 20 extinction sessions. These results show that lever pressing maintained by negative reinforcement can be highly resistant to extinction. The persistence of responding on the timeout lever after avoidance extinction is not readily explained by current theories.  (+info)

Aphasic disorder in patients with closed head injury. (2/917)

Quantitative assessment of 50 patients with closed head injury disclosed that anomic errors and word finding difficulty were prominent sequelae as nearly half of the series had defective scores on tests of naming and/or word association. Aphasic disturbance was associated with severity of brain injury as reflected by prolonged coma and injury of the brain stem.  (+info)

Plasticity of temporal information processing in the primary auditory cortex. (3/917)

Neurons in the rat primary auditory cortex (A1) generally cannot respond to tone sequences faster than 12 pulses per second (pps). To test whether experience can modify this maximum following rate in adult rats, trains of brief tones with random carrier frequency but fixed repetition rate were paired with electrical stimulation of the nucleus basalis (NB) 300 to 400 times per day for 20-25 days. Pairing NB stimulation with 5-pps stimuli markedly decreased the cortical response to rapidly presented stimuli, whereas pairing with 15-pps stimuli significantly increased the maximum cortical following rate. In contrast, pairing with fixed carrier frequency 15-pps trains did not significantly increase the mean maximum following rate. Thus this protocol elicits extensive cortical remodeling of temporal response properties and demonstrates that simple differences in spectral and temporal features of the sensory input can drive very different cortical reorganizations.  (+info)

Time and memory: towards a pacemaker-free theory of interval timing. (4/917)

A popular view of interval timing in animals is that it is driven by a discrete pacemaker-accumulator mechanism that yields a linear scale for encoded time. But these mechanisms are fundamentally at odds with the Weber law property of interval timing, and experiments that support linear encoded time can be interpreted in other ways. We argue that the dominant pacemaker-accumulator theory, scalar expectancy theory (SET), fails to explain some basic properties of operant behavior on interval-timing procedures and can only accommodate a number of discrepancies by modifications and elaborations that raise questions about the entire theory. We propose an alternative that is based on principles of memory dynamics derived from the multiple-time-scale (MTS) model of habituation. The MTS timing model can account for data from a wide variety of time-related experiments: proportional and Weber law temporal discrimination, transient as well as persistent effects of reinforcement omission and reinforcement magnitude, bisection, the discrimination of relative as well as absolute duration, and the choose-short effect and its analogue in number-discrimination experiments. Resemblances between timing and counting are an automatic consequence of the model. We also argue that the transient and persistent effects of drugs on time estimates can be interpreted as well within MTS theory as in SET. Recent real-time physiological data conform in surprising detail to the assumptions of the MTS habituation model. Comparisons between the two views suggest a number of novel experiments.  (+info)

Evaluation of quantitative theories of timing. (5/917)

Scalar timing theory is a clear, complete, modular, and precise theory of timing that explains much of the data from many timing procedures, but not all of the data from all of the procedures. The multiple-time-scale theory of timing provides an alternative representation of time that has not yet been tested with respect to its fit to timing data.  (+info)

Multiple time scales is well named. (6/917)

Staddon and Higa's article is a critique of scalar expectancy theory, and a proposed alternative, multiple time scales. The critique is generally flawed, both factually and logically. The alternative is bewildering in its flexibility, opaque in its quantitative description, and never addressed to real data.  (+info)

Modeling modeling. (7/917)

Models are tools; they need to fit both the hand and the task. Presence or absence of a feature such as a pacemaker or a cascade is not in itself good. Or bad. Criteria for model evaluation involve benefit-cost ratios, with the numerator a function of the range of phenomena explained, goodness of fit, consistency with other nearby models, and intangibles such as beauty. The denominator is a function of complexity, the number of phenomena that must be ignored, and the effort necessary to incorporate the model into one's parlance. Neither part of the ratio can yet be evaluated for MTS, whose authors provide some cogent challenges to SET.  (+info)

Spatiotemporal properties of layer V neurons of the rat primary somatosensory cortex. (8/917)

Animals in their natural environments actively process spatiotemporally complex sensory signals in order to guide adaptive behavior. It therefore seems likely that the properties of both single neurons and neural ensembles should reflect the dynamic nature of such interactions. During exploratory behaviors, rats move their whiskers to actively discriminate between different tactile features. We investigated whether this dynamic sensory processing was reflected in the spatial and temporal properties of neurons in layer V of the 'whisker area' in the rat primary somatosensory cortex. We found that the majority of layer V neurons had large (8.5+/-4.9 whiskers) spatiotemporal receptive fields (i.e. individual cells responded best to different whiskers as a function of post-stimulus time), and that the excitatory responses of surround whiskers formed a spatial gradient of excitation that seemed to reflect the greater use of the ventral and caudal whiskers during natural behaviors. Analyses of ensembles of layer V neurons revealed that single-whisker stimuli activated a portion of layer V that extends well beyond a single cortical column (average of 5.6 barrel cortical columns). Based on these results, we conclude that the rat primary somatosensory cortex does not appear to operate as a static decoder of tactile information. On the contrary, our data suggest that tactile processing in rats is likely to involve the on-going interactions between populations of broadly tuned neurons in the thalamocortical pathway.  (+info)