Maroteaux-lamy syndrome: five novel mutations and their structural localization. (1/49)

Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI, MPS VI) is an autosomal recessive disorder due to the deficiency of the lysosomal enzyme N-acetylgalactosamine-4-sulfatase (arylsulfatase B, ASB). Mutation analysis in Maroteaux-Lamy syndrome resulted in the identification of approximately 40 molecular defects underlying a great genetic heterogeneity. Here we report five novel mutations in Italian subjects: S65F, P116H, R315Q, Q503X, P531R; each defect was confirmed by restriction enzyme or amplification refractory mutation system (ARMS) analysis. We also performed a three-dimensional (3-D) structure analysis of the alterations identified by us, and of an additional 22 point mutations reported by other groups, in an attempt to draw helpful information about their possible effects on protein conformation.  (+info)

Evaluation of fibroblast-mediated gene therapy in a feline model of mucopolysaccharidosis type VI. (2/49)

Fibroblast-mediated ex vivo gene therapy was evaluated in the N-acetylgalactosamine 4-sulfatase (4S) deficient mucopolysaccharidosis type VI (MPS VI) cat. Skin biopsies were obtained at birth from severely affected MPS VI kittens and used to initiate fibroblast outgrowths for retroviral transduction with the 4S cDNA. 4S gene expression in transduced cells was under the transcriptional control of the MoMLV long terminal repeat promoter or the cytomegalovirus (CMV) immediate-early promoter. Characterisation of gene-transduced fibroblasts demonstrated the cells to be over-expressing 4S activity. Twenty-four to forty million autologous, gene-corrected fibroblasts were implanted under the renal capsule of three MPS VI kittens at 8-16 weeks of age. Transient, low levels of 4S activity were detected in peripheral blood leukocytes shortly after implantation but were not detectable within 3-8 weeks' post-implantation. Long-term biochemical and clinical evaluation of these cats demonstrated identical disease progression to that previously described in untreated, clinically severe MPS VI cats.  (+info)

Autologous transplantation of retrovirally transduced bone marrow or neonatal blood cells into cats can lead to long-term engraftment in the absence of myeloablation. (3/49)

Autologous transplantation of retrovirally transduced bone marrow (BM) or neonatal blood cells was carried out on eight cats (ranging in age from 2 weeks to 12 months) with mucopolysaccharidosis type VI (MPS VI). The transducing vector contained the full-length cDNA encoding human arylsulfatase B (hASB), the enzymatic activity deficient in this lysosomal storage disorder. Following transplantation, the persistence of transduced cells and enzymatic expression were monitored for more than 2 years. Five of the cats received no myeloablative preconditioning, two cats received 370-390 cGy of total body irradiation (TBI), and one cat received 190 cGy TBI. Evidence of transduced cells, as judged by enzymatic activity and PCR detection of the provirus, was demonstrated in granulocytes, lymphocytes, or BM cells of the treated animals up to 31 months after transplantation. Radiation preconditioning was not required to achieve these results, nor were they dependent on the recipient's age. However, despite the long-term persistence of transduced cells, the levels of ASB activity in the transplanted animals was low, and no clinical improvements were detected. These data provide evidence for the long-term persistence of retrovirally transduced feline hematopoietic cells, and further documentation that engraftment of transduced cells can be achieved in the absence of myeloablation. Consistent with previous bone marrow transplantation studies, these results also suggest that to achieve clinical improvement of MPS VI, particularly in the skeletal system, high-level expression of ASB must be achieved in the treated animals and improved techniques for targeting the expressed enzyme to specific sites of pathology (e.g. chondrocytes) must be developed.  (+info)

Processing of normal lysosomal and mutant N-acetylgalactosamine 4-sulphatase: BiP (immunoglobulin heavy-chain binding protein) may interact with critical protein contact sites. (4/49)

The lysosomal hydrolase N-acetylgalactosamine-4-sulphatase (4-sulphatase) is essential for the sequential degradation of the glycosaminoglycans, dermatan and chondroitin sulphate and, when deficient, causes the lysosomal storage disorder mucopolysaccharidosis type VI. The cysteine at codon 91 of human 4-sulphatase was identified previously as a key residue in the active site of the enzyme and was mutated by site-directed mutagenesis to produce a 4-sulphatase in which cysteine-91 was replaced by a threonine residue (C91T). The C91T mutation caused a loss of 4-sulphatase activity, a detectable protein conformational change and a lower level of intracellular 4-sulphatase protein [Brooks, Robertson, Bindloss, Litjens, Anson, Peters, Morris and Hopwood (1995) Biochem. J. 307, 457-463]. In the present study, we report that C91T is synthesized normally in the endoplasmic reticulum as a 66 kDa glycosylated protein, which is very similar in size to wild-type 4-sulphatase. However, C91T neither underwent normal Golgi processing, shown by lack of modification to form mannose 6-phosphate residues on its oligosaccharide side chains, nor did it traffic to the lysosome to undergo normal endosomal-lysosomal proteolytic processing. Instead, C91T remained in an early biosynthetic compartment and was degraded. The molecular chaperone, immunoglobulin binding protein (BiP), was associated with newly-synthesized wild-type and mutant 4-sulphatase proteins for extended periods, but no direct evidence was found for involvement of BiP in the retention or degradation of the C91T protein. This suggested that prolonged association of mutant protein with BiP does not necessarily infer involvement of BiP in the quality control process, as previously implied in the literature. The predicted BiP binding sites on 4-sulphatase map to beta-strands and alpha-helices, which are co-ordinated together in the folded molecule, indicating that BiP interacts with critical protein folding or contact sites on 4-sulphatase.  (+info)

Advantages of using same species enzyme for replacement therapy in a feline model of mucopolysaccharidosis type VI. (5/49)

In a feline model of mucopolysaccharidosis type VI (MPS VI), recombinant feline N-acetylgalactosamine-4-sulfatase (rf4S) administered at a dose of 1 mg/kg of body weight, altered the clinical course of the disease in two affected cats treated from birth. After 170 days of therapy, both cats were physically indistinguishable from normal cats with the exception of mild corneal clouding. Feline N-acetylgalactosamine-4-sulfatase was effective in reducing urinary glycosaminoglycan levels and lysosomal storage in all cell types examined except for corneal keratocytes and cartilage chondrocytes. In addition, skeletal pathology was nearly normalized as assessed by radiographic evidence and bone morphometric analysis. Comparison of results with a previous study in which recombinant human 4S (rh4S) was used at an equivalent dose and one 5 times higher indicated that rf4S had a more pronounced effect on reducing pathology than the same dose of rh4S, and in some instances such as bone pathology and lysosomal storage in aorta smooth muscle cells, it was as good as, or better than, the higher dose of rh4S. We conclude that in the feline MPS VI model the use of native or same species enzyme for enzyme replacement therapy has significant benefits.  (+info)

Measurements from normal umbilical cord blood of four lysosomal enzymatic activities: alpha-L-iduronidase (Hurler), galactocerebrosidase (globoid cell leukodystrophy), arylsulfatase A (metachromatic leukodystrophy), arylsulfatase B (Maroteaux-Lamy). (6/49)

Umbilical cord blood (UCB) has received increasing attention as a source of unrelated hematopoietic stem cells for transplantation. Lysosomal diseases have been effectively treated and normal enzymatic activity has occurred subsequent to engraftment using UCB. The use of donor cells with normal amounts of enzyme, rather than those from carriers whose level may be 50% or less, is an obvious goal. The frequency of such heterozygotes varies from 1:10 to 1:140 or lower depending upon the disease at issue. We assayed the levels of lysosomal enzymes in normal UCB in random samples as well as those used for transplantation. We measured the following enzymatic activities: alpha-l-iduronidase (Hurler), galactocerebrosidase (globoid cell leuko- dystrophy) and arylsulfatase A (metachromatic leukodystrophy). For the latter, levels of activity in UCB are comparable to those found in adult blood. In the case of arylsulfatase B (Maroteaux-Lamy) a level lower than adult level was found. An informed choice by the transplanting physician based on the activity of the relevant enzyme in the UCB donor will provide a better opportunity for an improved prognosis for more complete correction of the recipient's primary disease. Bone Marrow Transplantation (2000) 25, 541-544.  (+info)

Umbilical cord blood transplantation for Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI). (7/49)

Severe Maroteaux-Lamy syndrome (mucopolysaccharidosis type VI) is usually fatal by early adulthood. Bone marrow transplantation is the only form of definitive enzyme replacement therapy available. A 5-year-old boy with Maroteaux-Lamy syndrome has successful recovery of bone marrow and enzymatic functions after umbilical cord blood transplant from his unaffected HLA-identical brother. Busulphan (16 mg/kg) and cyclophosphamide (200 mg/kg) were used as preparative chemotherapy with short methotrexate and long cyclosporin as prophylaxis against graft-versus-host disease (GVHD). A total of 6.08 x 10(7)/kg nucleated cells and 2.92 x 10(5)/kg CD34+ cells were transplanted with neutrophil engraftment achieved on day 26. There was no evidence of acute and chronic GVHD. Fifteen months after transplant, a normal level of N-acetylgalactosamine-4-sulphatase activity was achieved despite mixed chimerism. There was clinical improvement of hepatosplenomegaly, facial and skin features, joint mobility and resolution of suppurative middle ear effusion. He returned to school and continued to perform well in academic studies. We report here the first successful umbilical cord blood transplant as treatment of Maroteaux-Lamy syndrome.  (+info)

Recognition of arylsulfatase A and B by the UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-phosphotransferase. (8/49)

The critical step for sorting of lysosomal enzymes is the recognition by a Golgi-located phosphotransferase. The topogenic structure common to all lysosomal enzymes essential for this recognition is still not well defined, except that lysine residues seem to play a critical role. Here we have substituted surface-located lysine residues of lysosomal arylsulfatases A and B. In lysosomal arylsulfatase A only substitution of lysine residue 457 caused a reduction of phosphorylation to 33% and increased secretion of the mutant enzyme. In contrast to critical lysines in various other lysosomal enzymes, lysine 457 is not located in an unstructured loop region but in a helix. It is not strictly conserved among six homologous lysosomal sulfatases. Based on three-dimensional structure comparison, lysines 497 and 507 in arylsulfatase B are in a similar position as lysine 457 of arylsulfatase A. Also, the position of oligosaccharide side chains phosphorylated in arylsulfatase A is similar in arylsulfatase B. Despite the high degree of structural homology between these two sulfatases substitution of lysines 497 and 507 in arylsulfatase B has no effect on the sorting and phosphorylation of this sulfatase. Thus, highly homologous lysosomal arylsulfatases A and B did not develop a single conserved phosphotransferase recognition signal, demonstrating the high variability of this signal even in evolutionary closely related enzymes.  (+info)