Peripheral autoantigen induces regulatory T cells that prevent autoimmunity. (1/2305)

Previous studies have shown that autoimmune thyroiditis can be induced in normal laboratory rats after thymectomy and split dose gamma-irradiation. Development of disease can be prevented by reconstitution of PVG rats shortly after their final irradiation with either peripheral CD4(+)CD45RC- T cells or CD4(+)CD8(-) thymocytes from syngeneic donors. Although the activity of both populations is known to depend on the activities of endogenously produced interleukin 4 and transforming growth factor beta, implying a common mechanism, the issue of antigen specificity of the cells involved has not yet been addressed. In this study, we show that the regulatory T cells that prevent autoimmune thyroiditis are generated in vivo only when the relevant autoantigen is also present. Peripheral CD4(+) T cells, from rats whose thyroids were ablated in utero by treatment with 131I, were unable to prevent disease development upon adoptive transfer into thymectomized and irradiated recipients. This regulatory deficit is specific for thyroid autoimmunity, since CD4(+) T cells from 131I-treated PVG.RT1(u) rats were as effective as those from normal donors at preventing diabetes in thymectomized and irradiated PVG.RT1(u) rats. Significantly, in contrast to the peripheral CD4(+) T cells, CD4(+)CD8(-) thymocytes from 131I-treated PVG donors were still able to prevent thyroiditis upon adoptive transfer. Taken together, these data indicate that it is the peripheral autoantigen itself that stimulates the generation of the appropriate regulatory cells from thymic emigrant precursors.  (+info)

Interaction of B cells with activated T cells reduces the threshold for CD40-mediated B cell activation. (2/2305)

CD154-CD40 interactions are of central importance for the induction of antibody responses to T-dependent antigens. Since most anti-CD40 mAb are only weak B cell mitogens, it is believed that under physiological conditions, signals through CD40 synergize with those from other receptors on B cells to induce B cell activation. We show here that the interaction of either normal B cells, or those from CBA/N (xid) mice, with CD3-activated primary T cells in whole spleen cell cultures markedly reduces the threshold for B cell activation via CD40. Hence, these pre-activated cells undergo vigorous proliferation when stimulated with either optimal or suboptimal concentrations of weakly mitogenic anti-CD40 mAb, or with soluble CD40 ligand. Blocking experiments indicate that the establishment of this priming effect requires stimulation via CD40 itself, plus T cell-derived IL-2. In support of this concept, only CD3/CD28-pre-activated, but not CD3-pre-activated T cells induce this effect, unless the co-cultures of B cells with the latter T cells are supplemented with IL-2. Although B cells activated in this fashion do express higher levels of CD40 than naive cells, we believe that this is insufficient to explain the observed dramatic effects on their proliferative capacity. Rather we propose that T cell-dependent B cell activation induces fundamental changes in the signalling machinery invoked by ligation of CD40. It is likely that this amplification loop could play an important role during the initiation of antibody responses to T-dependent antigens, when activated CD4 T cells only express low levels of CD154.  (+info)

Development and function of autospecific dual TCR+ T lymphocytes. (3/2305)

Recent studies have challenged the long held concept that each T lymphocyte expresses on its surface only a single, unique alphabetaTCR. Dual TCR+ T cells have been recognized, however, their origin and potential to escape screening for self-reactivity remain obscure. We now report the thymic generation of dual alphabetaTCR+ T cells in the H-2Db/H-Y-specific TCR transgenic (Tg) mouse. Dual TCR+ thymocytes were positively selected less efficiently than single TCR+ thymocytes, although a subset attained maturity. Importantly, when TCR Tg mice were bred onto a negatively selecting background, auto-specific cells survived central deletion and matured as CD4+ dual TCR+ cells. These cells were autoreactive when CD8 expression was restored. The existence of autospecific, dual TCR+ T cells may have implications for the maintenance of self tolerance.  (+info)

Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-xL, regulate the survival of murine pro-B lymphocytes. (4/2305)

Hematopoietic cells require cytokine-initiated signals for survival as well as proliferation. The pathways that transduce these signals, ensuring timely regulation of cell fate genes, remain largely undefined. The NFIL3 (E4BP4) transcription factor, Bcl-xL, and constitutively active mutants of components in Ras signal transduction pathways have been identified as key regulation proteins affecting murine interleukin-3 (IL-3)-dependent cell survival. Here we show that expression of NFIL3 is regulated by oncogenic Ras mutants through both the Raf-mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. NFIL3 inhibits apoptosis without affecting Bcl-xL expression. By contrast, Bcl-xL levels are regulated through the membrane proximal portion in the cytoplasmic domain of the receptor (betac chain), which is shared by IL-3 and granulocyte-macrophage colony-stimulating factor. Activation of either pathway alone is insufficient to ensure cell survival, indicating that multiple independent signal transduction pathways mediate the survival of developing B-lymphoid cells.  (+info)

IL-10-induced anergy in peripheral T cell and reactivation by microenvironmental cytokines: two key steps in specific immunotherapy. (5/2305)

Specific immunotherapy (SIT) is widely used for treatment of allergic diseases and could potentially be applied in other immunological disorders. Induction of specific unresponsiveness (anergy) in peripheral T cells and recovery by cytokines from the tissue microenvironment represent two key steps in SIT with whole allergen or antigenic T cell peptides (PIT). The anergy is directed against the T cell epitopes of the respective antigen and characterized by suppressed proliferative and cytokine responses. It is initiated by autocrine action of IL-10, which is increasingly produced by the antigen-specific T cells. Later in therapy, B cells and monocytes also produce IL-10. The anergic T cells can be reactivated by different cytokines. Whereas IL-15 and IL-2 generate Th1 cytokine profile and an IgG4 antibody response, IL-4 reactivates a Th2 cytokine pattern and IgE antibodies. Increased IL-10 suppresses IgE and enhances IgG4 synthesis, resulting in a decreased antigen-specific IgE:IgG4 ratio, as observed normally in patients after SIT or PIT. The same state of anergy against the major bee venom allergen, phospholipase A2, can be observed in subjects naturally anergized after multiple bee stings. Together, these data demonstrate the pivotal role of autocrine IL-10 in induction of specific T cell anergy and the important participation of the cytokine microenvironment in SIT. Furthermore, knowledge of the mechanisms explaining reasons for success or failure of SIT may enable possible predictive measures of the treatment.  (+info)

A logical analysis of T cell activation and anergy. (6/2305)

Interaction of the antigen-specific receptor of T lymphocytes with its antigenic ligand can lead either to cell activation or to a state of profound unresponsiveness (anergy). Although subtle changes in the nature of the ligand or of the antigen-presenting cell have been shown to affect the outcome of T cell receptor ligation, the mechanism by which the same receptor can induce alternative cellular responses is not completely understood. A model for explaining both positive (cell proliferation and cytokine production) and negative (anergy induction) signaling of T lymphocytes is described herein. This model relies on the autophosphorylative properties of the tyrosine kinases associated with the T cell receptor. One of its basic assumptions is that the kinase activity of these receptor-associated enzymes remains above background level after ligand removal and is responsible for cellular unresponsiveness. Using a simple Boolean formalism, we show how the timing of the binding and intracellular signal-transduction events can affect the properties of receptor signaling and determine the type of cellular response. The present approach integrates into a common framework a large body of experimental observations and allows specification of conditions leading to cellular activation or to anergy.  (+info)

Thrombotic thrombocytopenic purpura and autoimmunity: a tale of shadows and suspects. (7/2305)

BACKGROUND AND OBJECTIVE: The key pathogenic feature of TTP is the formation of platelet aggregates within the microcirculation; however, the etiology of such aggregates has been elusive for years. A large amount of evidence points to an abnormal interaction between damaged vascular endothelium and platelets, although the cause of the primary microvascular endothelial cell injury is seldom clear. The autoimmune hypothesis often recurs, and this is based on a number of observations: the claimed superiority of plasma-exchange over plasma infusion, the anecdotal report of the presence of immunocomplexes and autoantibodies in TTP patients, the efficacy of the administration of corticosteroids and other immunosuppressant agents, and the concomitant occurrence of TTP in association with autoimmune diseases, especially systemic lupus erythematosus (SLE). This review will focus on the complex relationships between TTP and humoral autoimmunity; in particular, similarities and differences between TTP, SLE and antiphospholipid (aPL) antibodies syndrome, as well as the putative role of several other antibodies directed towards endothelial cells and/or platelets, including the recently discovered anti-CD36 antibodies and antivWF-cleaving metalloprotease, will be discussed. DESIGN AND METHODS: The authors have been involved in the study and treatment of TTP and autoimmune diseases for years; furthermore, the PubMed data base of the National Library of Congress has been extensively searched using the Internet. CONCLUSIONS: Although over the years evidence has increased in favor of the autoimmune hypothesis for TTP etiopathogenesis, TTP should not yet be considered an autoimmune disease. Autoantibodies should be regarded as only one of the many different insults which can trigger microvascular thrombosis even though the autoimmune theory of the pathogenesis of TTP is gaining more and more strength. As far as concerns the relationship between TTP, SLE and aPL antibodies-related disorders, these diseases should be distinguished on the basis of both different clinical presentations and accurate antibody screening, although this approach should definitely not delay the prompt start of treatment.  (+info)

Spontaneous regression of primary autoreactivity during chronic progression of experimental autoimmune encephalomyelitis and multiple sclerosis. (8/2305)

Experimental autoimmune encephalomyelitis (EAE) is a widely used animal model for multiple sclerosis (MS). EAE is typically initiated by CD4(+) T helper cell type 1 (Th1) autoreactivity directed against a single priming immunodominant myelin peptide determinant. Recent studies have shown that clinical progression of EAE involves the accumulation of neo-autoreactivity, commonly referred to as epitope spreading, directed against peptide determinants not involved in the priming process. This study directly addresses the relative roles of primary autoreactivity and secondary epitope spreading in the progression of both EAE and MS. To this end we serially evaluated the development of several epitope-spreading cascades in SWXJ mice primed with distinctly different encephalitogenic determinants of myelin proteolipid protein. In a series of analogous experiments, we examined the development of epitope spreading in patients with isolated monosymptomatic demyelinating syndrome as their disease progressed to clinically definite MS. Our results indicate that in both EAE and MS, primary proliferative autoreactivity associated with onset of clinical disease invariably regresses with time and is often undetectable during periods of disease progression. In contrast, the emergence of sustained secondary autoreactivity to spreading determinants is consistently associated with disease progression in both EAE and MS. Our results indicate that chronic progression of EAE and MS involves a shifting of autoreactivity from primary initiating self-determinants to defined cascades of secondary determinants that sustain the self-recognition process during disease progression.  (+info)