Molecular differentiation of Renibacterium salmoninarum isolates from worldwide locations. (1/146)

Renibacterium salmoninarum is a genospecies that is an obligate pathogen of salmonid fish and is capable of intracellular survival. Conventional typing systems have failed to differentiate isolates of R. salmoninarum. We used two methods to assess the extent of molecular variation which was present in isolates from different geographic locations. In one analysis we investigated possible polymorphisms in a specific region of the genome, the intergenic spacer (ITS) region between the 16S and 23S rRNA genes. In the other analysis we analyzed differences throughout the genome by using randomly amplified polymorphic DNA (RAPD). We amplified the spacer region of 74 isolates by using PCR and performed a DNA sequence analysis with 14 geographically distinct samples. The results showed that the 16S-23S ribosomal DNA spacer region of R. salmoninarum is highly conserved and suggested that only a single copy of the rRNA operon is present in this slowly growing pathogen. DNA sequencing of the spacer region showed that it was the same length in all 14 isolates examined, and the same nucleotide sequence, sequevar 1, was obtained for 11 of these isolates. Two other sequevars were found. No tRNA genes were found. We found that RAPD analysis allows reproducible differentiation between isolates of R. salmoninarum obtained from different hosts and different geographic regions. By using RAPD analysis it was possible to differentiate between isolates with identical ITS sequences.  (+info)

A sensitive nested reverse transcriptase PCR assay to detect viable cells of the fish pathogen Renibacterium salmoninarum in Atlantic salmon (Salmo salar L.). (2/146)

A nested reverse transcriptase (RT) PCR assay detected mRNA of the salmonid pathogen Renibacterium salmoninarum in samples of RNA extracts of between 1 and 10 cells. Total RNA was extracted from cultured bacteria, Atlantic salmon (Salmo salar L.) kidney tissue and ovarian fluid seeded with the pathogen, and kidney tissue from both experimentally challenged and commercially raised fish. Following DNase treatment, extracted RNA was amplified by both RT PCR and PCR by using primers specific for the gene encoding the major protein antigen of R. salmoninarum. A 349-bp amplicon was detected by polyacrylamide gel electrophoresis and silver stain. Inactivation of cultured bacteria by rifampin or erythromycin produced a loss of nested RT PCR mRNA detection corresponding to a loss of bacterial cell viability determined from plate counts but no loss of DNA detection by PCR. In subclinically diseased fish, nested RT PCR identified similar levels of infected fish as determined by viable pathogen culture. Higher percentages of fish testing positive were generated by PCR, particularly in samples from fish previously subjected to antibiotic chemotherapy where 93% were PCR positive, but only 7% were nested RT PCR and culture positive. PCR can generate false-positive data from amplification of target DNA from nonviable pathogen cells. Therefore, nested RT PCR may prove useful for monitoring cultured Atlantic salmon for the presence of viable R. salmoninarum within a useful time frame, particularly samples from broodstock where antibiotic chemotherapy is used prior to spawning to reduce vertical pathogen transmission.  (+info)

Molecular diversity of Renibacterium salmoninarum isolates determined by randomly amplified polymorphic DNA analysis. (3/146)

The molecular diversity among 60 isolates of Renibacterium salmoninarum which differ in place and date of isolation was investigated by using randomly amplified polymorphic DNA (RAPD) analysis. Isolates were grouped into 21 banding patterns which did not reflect the biological source. Four 16S-23S rRNA intergenic spacer (ITS1) sequence variations and two alleles of an exact tandem repeat locus, ETR-A, were the bases for formation of distinct groups within the RAPD clusters. This study provides evidence that the most common ITS1 sequence variant, SV1, possesses two copies of a 51-bp repeat unit at ETR-A and has been widely dispersed among countries which are associated with mainstream intensive salmonid culture.  (+info)

Characterization of a Rothia-like organism from a mouse: description of Rothia nasimurium sp. nov. and reclassification of Stomatococcus mucilaginosus as Rothia mucilaginosa comb. nov. (4/146)

An unknown, Gram-positive, ovoid-shaped bacterium isolated from the nose of a mouse was subjected to a polyphasic taxonomic analysis. Comparative 16S rRNA gene sequencing demonstrated that the unknown organism was a member of the family Micrococcaceae and possessed a specific phylogenetic association with Rothia dentocariosa and Stomatococcus mucilaginosus. Phenotypically, the bacterium closely resembled R. dentocariosa and S. mucilaginosus but could be distinguished from these species by biochemical tests and electrophoretic analysis of whole-cell proteins. Based on both phylogenetic and phenotypic evidence, it is proposed that the unknown bacterium be classified in the genus Rothia, as Rothia nasimurium sp. nov. In addition, it is proposed that S. mucilaginosus be reclassified in the genus Rothia, as Rothia mucilaginosa comb. nov.  (+info)

Phylogenetic and physiological diversity of Arthrobacter strains isolated from unconsolidated subsurface sediments. (5/146)

Forty strains of Gram-positive, aerobic, heterotrophic bacteria isolated from saturated subsurface lacustrine, paleosol and fluvial sediments at the US Department of Energy's Hanford Site in south central Washington State were characterized by phylogenetic analysis of 16S rRNA gene sequences and by determination of selected morphological, physiological and biochemical traits. Phylogenetic analyses of 16S rDNA sequences from subsurface isolates in the context of similar sequences from previously described bacterial species indicated that 38 of the subsurface strains were most closely related to Arthrobacter: The other two strains appeared to be most closely related to Kocuria. The subsurface isolates fell into seven phylogenetically coherent and distinct clusters, indicating that there was a significant degree of diversity among them. Additional diversity was detected by analysis of cellular fatty acids and physiological traits. The general morphological, physiological and biochemical traits of the subsurface strains were consistent with those of Arthrobacter, Micrococcus and genera recently separated from Micrococcus, such as Kocuria. Some of the subsurface strains were phylogenetically closely related to certain species of Arthrobacter. (16S rDNA sequence similarities >99%). However, most of the subsurface isolates did not cluster with previously established species in phylogenetic analyses of 16S rRNA gene sequences or with hierarchical cluster analysis of cellular fatty acid profiles. Moreover, many of the subsurface isolates that were most closely related to Arthrobacter. also differed from all established species of that genus in several of their specific physiological characteristics. Most of the subsurface isolates, then, are likely to be novel strains or species of Arthrobacter.  (+info)

Characterization of attenuated Renibacterium salmoninarum strains and their use as live vaccines. (6/146)

Two nutritionally mutant strains of Renibacterium salmoninarum (Rs) were isolated that grew on tryticase soy agar (Rs TSA1) or brain heart infusion agar (Rs BHI1). These 2 strains could be continuously cultured on these media, whereas typical R. salmoninarum would only grow on KDM-2 agar. We determined no other phenotypic difference that could be used to distinguish them from wild-type R. salmoninarum. Both strains were found to be avirulent when 5 x 10(6) bacteria were intraperitoneally (i.p.) injected into Atlantic salmon. Rs TSA1, Rs BHI1, and Rs MT-239 (a R. salmoninarum strain previously shown to be attenuated) were tested as live vaccines in 2 separate trials. The best protection was seen with Rs TSA1. Vaccinated Atlantic salmon had relative percent survival (RPS) of 50 at 74 d post-challenge in Trial 1 and 76 at 60 d post-challenge in Trial 2. In both trials, 100% of the control salmon died from bacterial kidney disease (BKD) (within 40 d for Trial 1 and 50 d for Trial 2) after i.p. challenge with 5 x 10(6) live cells of the virulent isolate Rs Margaree.  (+info)

Detection of methanotroph diversity on roots of submerged rice plants by molecular retrieval of pmoA, mmoX, mxaF, and 16S rRNA and ribosomal DNA, including pmoA-based terminal restriction fragment length polymorphism profiling. (7/146)

The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the alpha subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA.  (+info)

Catheter-related bacteremia due to Kocuria kristinae in a patient with ovarian cancer. (8/146)

We report on the first case of a catheter-related recurrent bacteremia caused by Kocuria kristinae, a gram-positive microorganism belonging to the family Micrococcaceae, in a 51-year-old woman with ovarian cancer. This unusual pathogen may cause opportunistic infections in patients with severe underlying diseases.  (+info)