Input-driven components of spike-frequency adaptation can be unmasked in vivo. (1/59)

Spike-frequency adaptation affects the response characteristics of many sensory neurons, and different biophysical processes contribute to this phenomenon. Many cellular mechanisms underlying adaptation are triggered by the spike output of the neuron in a feedback manner (e.g., specific potassium currents that are primarily activated by the spiking activity). In contrast, other components of adaptation may be caused by, in a feedforward way, the sensory or synaptic input, which the neuron receives. Examples include viscoelasticity of mechanoreceptors, transducer adaptation in hair cells, and short-term synaptic depression. For a functional characterization of spike-frequency adaptation, it is essential to understand the dependence of adaptation on the input and output of the neuron. Here, we demonstrate how an input-driven component of adaptation can be uncovered in vivo from recordings of spike trains in an insect auditory receptor neuron, even if the total adaptation is dominated by output-driven components. Our method is based on the identification of different inputs that yield the same output and sudden switches between these inputs. In particular, we determined for different sound frequencies those intensities that are required to yield a predefined steady-state firing rate of the neuron. We then found that switching between these sound frequencies causes transient deviations of the firing rate. These firing-rate deflections are evidence of input-driven adaptation and can be used to quantify how this adaptation component affects the neural activity. Based on previous knowledge of the processes in auditory transduction, we conclude that for the investigated auditory receptor neurons, this adaptation phenomenon is of mechanical origin.  (+info)

Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts. (2/59)

Bacteria of the genus Xenorhabdus are mutually associated with entomopathogenic nematodes of the genus Steinernema and are pathogenic to a broad spectrum of insects. The nematodes act as vectors, transmitting the bacteria to insect larvae, which die within a few days of infection. We characterized the early stages of bacterial infection in the insects by constructing a constitutive green fluorescent protein (GFP)-labeled Xenorhabdus nematophila strain. We injected the GFP-labeled bacteria into insects and monitored infection. We found that the bacteria had an extracellular life cycle in the hemolymph and rapidly colonized the anterior midgut region in Spodoptera littoralis larvae. Electron microscopy showed that the bacteria occupied the extracellular matrix of connective tissues within the muscle layers of the Spodoptera midgut. We confirmed the existence of such a specific infection site in the natural route of infection by infesting Spodoptera littoralis larvae with nematodes harboring GFP-labeled Xenorhabdus. When the infective juvenile (IJ) nematodes reached the insect gut, the bacterial cells were rapidly released from the intestinal vesicle into the nematode intestine. Xenorhabdus began to escape from the anus of the nematodes when IJs were wedged in the insect intestinal wall toward the insect hemolymph. Following their release into the insect hemocoel, GFP-labeled bacteria were found only in the anterior midgut region and hemolymph of Spodoptera larvae. Comparative infection assays conducted with another insect, Locusta migratoria, also showed early bacterial colonization of connective tissues. This work shows that the extracellular matrix acts as a particular colonization site for X. nematophila within insects.  (+info)

Heat stress-mediated plasticity in a locust looming-sensitive visual interneuron. (3/59)

Neural circuits are strongly affected by temperature and failure ensues at extremes. However, detrimental effects of high temperature on neural pathways can be mitigated by prior exposure to high, but sublethal temperatures (heat shock). Using the migratory locust, Locusta migratoria, we investigated the effects of heat shock on the thermosensitivity of a visual interneuron [the descending contralateral movement detector (DCMD)]. Activity in the DCMD was elicited using a looming stimulus and the response was recorded from the axon using intracellular and extracellular methods. The thoracic region was perfused with temperature-controlled saline and measurements were taken at 5 degrees intervals starting at 25 degrees C. Activity in DCMD was decreased in control animals with increased temperature, whereas heat-shocked animals had a potentiated response such that the peak firing frequency was increased. Significant differences were also found in the thermosensitivity of the action potential properties between control and heat-shocked animals. Heat shock also had a potentiating effect on the amplitude of the afterdepolarization. The concurrent increase in peak firing frequency and maintenance of action potential properties after heat shock could enhance the reliability with which DCMD initiates visually guided behaviors at high temperature.  (+info)

The analysis of large-scale gene expression correlated to the phase changes of the migratory locust. (4/59)

The migratory locust is one of the most notorious agricultural pests that undergo a well known reversible, density-dependent phase transition from the solitary to the gregarious. To demonstrate the underlying molecular mechanisms of the phase change, we generated 76,012 ESTs from the whole body and dissected organs in the two phases. Comparing 12,161 unigene clusters, we identified 532 genes as phase-related (P < 0.01). Comprehensive assessment of the phase-related expression revealed that, whereas most of the genes in various categories from hind legs and the midgut are down-regulated in the gregarious phase, several gene classes in the head are impressively up-regulated, including those with peptidase, receptor, and oxygen-binding activities and those related to development, cell growth, and responses to external stimuli. Among them, a superfamily of proteins, the JHPH super-family, which includes juvenile hormone-binding protein, hexamerins, prophenoloxidase, and hemocyanins, were highly expressed in the heads of the gregarious hoppers and hind legs of the solitary hoppers. Quantitative PCR experiments confirmed in part the EST results. These differentially regulated genes have strong functional implications that numerous molecular activities are involved in phase plasticity. This study provides ample molecular markers and genomic information on hemimetabolous insects and insights into the genetic and molecular mechanisms of phase changes in locusts.  (+info)

Biosynthesis and secretion of insect lipoprotein: involvement of furin in cleavage of the apoB homolog, apolipophorin-II/I. (5/59)

The biosynthesis of neutral fat-transporting lipoproteins involves the lipidation of their nonexchangeable apolipoprotein. In contrast to its mammalian homolog apolipoprotein B, however, insect apolipophorin-II/I (apoLp-II/I) is cleaved posttranslationally at a consensus substrate sequence for furin, resulting in the appearance of two apolipoproteins in insect lipoprotein. To characterize the cleavage process, a truncated cDNA encoding the N-terminal 38% of Locusta migratoria apoLp-II/I, including the cleavage site, was expressed in insect Sf9 cells. This resulted in the secretion of correctly processed apoLp-II and truncated apoLp-I. The cleavage could be impaired by the furin inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone (decRVKRcmk) as well as by mutagenesis of the consensus substrate sequence for furin, as indicated by the secretion of uncleaved apoLp-II/I-38. Treatment of L. migratoria fat body, the physiological site of lipoprotein biosynthesis, with decRVKRcmk similarly resulted in the secretion of uncleaved apoLp-II/I, which was integrated in lipoprotein particles of buoyant density identical to wild-type high density lipophorin (HDLp). These results show that apoLp-II/I is posttranslationally cleaved by an insect furin and that biosynthesis and secretion of HDLp can occur independent of this processing step. Structure modeling indicates that the cleavage of apoLp-II/I represents a molecular adaptation in homologous apolipoprotein structures. We propose that cleavage enables specific features of insect lipoproteins, such as low density lipoprotein formation, endocytic recycling, and involvement in coagulation.  (+info)

Intracellular fate of LDL receptor family members depends on the cooperation between their ligand-binding and EGF domains. (6/59)

The insect low-density lipoprotein (LDL) receptor (LDLR) homologue LpR mediates endocytosis of an insect lipoprotein (lipophorin) that is structurally related to LDL. Despite these similarities, lipophorin and LDL follow distinct intracellular routes upon endocytosis by their receptors. Whereas LDL is degraded in lysosomes, lipophorin is recycled in a transferrin-like manner. We constructed several hybrid receptors composed of Locusta migratoria LpR and human LDLR regions to identify the domains implicated in LpR-mediated ligand recycling. Additionally, the triadic His562 residue of LDLR, which is putatively involved in ligand uncoupling, was mutated to Asn, corresponding to Asn643 in LpR, to analyse the role of the His triad in receptor functioning. The familial hypercholesterolaemia (FH) class 5 mutants LDLR(H562Y) and LDLR(H190Y) were also analysed in vitro. Fluorescence microscopic investigation and quantification suggest that LpR-mediated ligand recycling involves cooperation between the ligand-binding domain and epidermal growth factor (EGF) domain of LpR, whereas its cytosolic tail does not harbour motifs that affect this process. LDLR residue His562 appears to be essential for LDLR recycling after ligand endocytosis but not for constitutive receptor recycling. Like LDLR(H562N), LDLR(H562Y) did not recycle bound ligand; moreover, the intracellular distribution of both mutant receptors after ligand incubation coincides with that of a lysosomal marker. The LDLR mutant characterization in vitro suggests that LDLR FH class 5 mutations might be divided into two subclasses.  (+info)

Testing the efficiency of sensory coding with optimal stimulus ensembles. (7/59)

According to Barlow's seminal "efficient coding hypothesis," the coding strategy of sensory neurons should be matched to the statistics of stimuli that occur in an animal's natural habitat. Using an automatic search technique, we here test this hypothesis and identify stimulus ensembles that sensory neurons are optimized for. Focusing on grasshopper auditory receptor neurons, we find that their optimal stimulus ensembles differ from the natural environment, but largely overlap with a behaviorally important sub-ensemble of the natural sounds. This indicates that the receptors are optimized for peak rather than average performance. More generally, our results suggest that the coding strategies of sensory neurons are heavily influenced by differences in behavioral relevance among natural stimuli.  (+info)

Spike-timing precision underlies the coding efficiency of auditory receptor neurons. (8/59)

Sensory systems must translate incoming signals quickly and reliably so that an animal can act successfully in its environment. Even at the level of receptor neurons, however, functional aspects of the sensory encoding process are not yet fully understood. Specifically, this concerns the question how stimulus features and neural response characteristics lead to an efficient transmission of sensory information. To address this issue, we have recorded and analyzed spike trains from grasshopper auditory receptors, while systematically varying the stimulus statistics. The stimulus variations profoundly influenced the efficiency of neural encoding. This influence was largely attributable to the presence of specific stimulus features that triggered remarkably precise spikes whose trial-to-trial timing variability was as low as 0.15 ms--one order of magnitude shorter than typical stimulus time scales. Precise spikes decreased the noise entropy of the spike trains, thereby increasing the rate of information transmission. In contrast, the total spike train entropy, which quantifies the variety of different spike train patterns, hardly changed when stimulus conditions were altered, as long as the neural firing rate remained the same. This finding shows that stimulus distributions that were transmitted with high information rates did not invoke additional response patterns, but instead displayed exceptional temporal precision in their neural representation. The acoustic stimuli that led to the highest information rates and smallest spike-time jitter feature pronounced sound-pressure deflections lasting for 2-3 ms. These upstrokes are reminiscent of salient structures found in natural grasshopper communication signals, suggesting that precise spikes selectively encode particularly important aspects of the natural stimulus environment.  (+info)