Folding of apocytochrome c induced by the interaction with negatively charged lipid micelles proceeds via a collapsed intermediate state. (1/2602)

Unfolded apocytochrome c acquires an alpha-helical conformation upon interaction with lipid. Folding kinetic results below and above the lipid's CMC, together with energy transfer measurements of lipid bound states, and salt-induced compact states in solution, show that the folding transition of apocytochrome c from the unfolded state in solution to a lipid-inserted helical conformation proceeds via a collapsed intermediate state (I(C)). This initial compact state is driven by a hydrophobic collapse of the polypeptide chain in the absence of the heme group and may represent a heme-free analogue of an early compact intermediate detected on the folding pathway of cytochrome c in solution. Insertion into the lipid phase occurs via an unfolding step of I(C) through a more extended state associated with the membrane surface (I(S)). While I(C) appears to be as compact as salt-induced compact states in solution with substantial alpha-helix content, the final lipid-inserted state (Hmic) is as compact as the unfolded state in solution at pH 5 and has an alpha-helix content which resembles that of native cytochrome c.  (+info)

Sphingosine 1-phosphate stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle. Role of endothelial differentiation gene 1, c-Src tyrosine kinase and phosphoinositide 3-kinase. (2/2602)

We report here that cultured airway smooth muscle cells contain transcripts of endothelial differentiation gene 1 (EDG-1), a prototypical orphan Gi-coupled receptor whose natural ligand is sphingosine 1-phosphate (S1P). This is consistent with data that showed that S1P activated both c-Src and p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) in a pertussis toxin (PTX)-sensitive manner in these cells. An essential role for c-Src was confirmed by using the c-Src inhibitor, PP1, which markedly decreased p42/p44 MAPK activation. We have also shown that phosphoinositide 3-kinase (PI-3K) inhibitors (wortmannin and LY294002) decreased p42/p44 MAPK activation. An essential role for PI-3K was supported by experiments that showed that PI-3K activity was increased in Grb-2 immunoprecipitates from S1P-stimulated cells. Significantly, Grb-2 associated PI-3K activity was decreased by pretreatment of cells with PTX. Finally, we have shown that the co-stimulation of cells with platelet-derived growth factor (PDGF) and S1P (which failed to stimulate DNA synthesis) elicited a larger p42/p44 MAPK activation over a 30 min stimulation compared with each agonist alone. This was associated with a S1P-dependent increase in PDGF-stimulated DNA synthesis. These results demonstrate that S1P activates c-Src and Grb-2-PI-3K (intermediates in the p42/p44 MAPK cascade) via a PTX-sensitive mechanism. This action of S1P is consistent with the stimulation of EDG-1 receptors. S1P might also function as a co-mitogen with PDGF, producing a more robust activation of a common permissive signal transduction pathway linked to DNA synthesis.  (+info)

Mycophenolate mofetil inhibits rat and human mesangial cell proliferation by guanosine depletion. (3/2602)

BACKGROUND: Mycophenolate mofetil (MMF) is used for immunosuppression after renal transplantation because it reduces lymphocyte proliferation by inhibiting inosine monophosphate dehydrogenase (IMPDH) in lymphocytes and GTP biosynthesis. In the present study we asked if therapeutic concentrations of MMF might interfere with mesangial cell (MC) proliferation which is involved in inflammatory proliferative glomerular diseases. METHODS: Rat and human MCs were growth-arrested by withdrawal of fetal calf serum (FCS) and stimulated by addition of FCS, platelet-derived growth factor (PDGF) or lysophosphatidic acid (LPA). Different concentrations of MMF (0.019-10 microM) were added concomitantly in the presence or absence of guanosine. MC proliferation was determined by [3H]thymidine incorporation. Cell viability was assessed by trypan blue exclusion. Apoptotic nuclei were stained using the Hoechst dye H33258. Cytosolic free Ca2+ concentrations were determined with the fluorescent calcium chelator fura-2-AM. RESULTS: MMF inhibited mitogen-induced rat MC proliferation with an IC50 of 0.45 +/- 0.13 microM. Human MCs proved to be even more sensitive (IC50 0.19 +/- 0.06 microM). Inhibition of MC proliferation was reversible and not accompanied by cellular necrosis or apoptosis. Addition of guanosine prevented the antiproliferative effect of MMF, indicating that inhibition of IMPDH is responsible for decreased MC proliferation. Early signalling events of GTP-binding-protein-coupled receptors, such as changes in intracellular Ca2+ levels were not affected by MMF. CONCLUSIONS: The results show that MMF has a concentration-dependent antiproliferative effect on cultured MCs in the therapeutic range, which might be a rationale for the use of this drug in the treatment of mesangial proliferative glomerulonephritis.  (+info)

Identification and characterization of alkenyl hydrolase (lysoplasmalogenase) in microsomes and identification of a plasmalogen-active phospholipase A2 in cytosol of small intestinal epithelium. (4/2602)

A lysoplasmalogenase (EC 3.3.2.2; EC 3.3.2.5) that liberates free aldehyde from 1-alk-1'-enyl-sn-glycero-3-phospho-ethanolamine or -choline (lysoplasmalogen) was identified and characterized in rat gastrointestinal tract epithelial cells. Glycerophosphoethanolamine was produced in the reaction in equimolar amounts with the free aldehyde. The microsomal membrane associated enzyme was present throughout the length of the small intestines, with the highest activity in the jejunum and proximal ileum. The rate of alkenyl ether bond hydrolysis was dependent on the concentrations of microsomal protein and substrate, and was linear with respect to time. The enzyme hydrolyzed both ethanolamine- and choline-lysoplasmalogens with similar affinities; the Km values were 40 and 66 microM, respectively. The enzyme had no activity with 1-alk-1'-enyl-2-acyl-sn-glycero-3-phospho-ethanolamine or -choline (intact plasmalogen), thus indicating enzyme specificity for a free hydroxyl group at the sn-2 position. The specific activities were 70 nmol/min/mg protein and 57 nmol/min/mg protein, respectively, for ethanolamine- and choline-lysoplasmalogen. The pH optimum was between 6.8 and 7.4. The enzyme required no known cofactors and was not affected by low mM levels of Ca2+, Mg2+, EDTA, or EGTA. The detergents, Triton X-100, deoxycholate, and octyl glucoside inhibited the enzyme. The chemical and physical properties of the lysoplasmalogenase were very similar to those of the enzyme in liver and brain microsomes. In developmental studies the specific activities of the small intestinal and liver enzymes increased markedly, 11.1- and 3.4-fold, respectively, in the first approximately 40 days of postnatal life. A plasmalogen-active phospholipase A2 activity was identified in the cytosol of the small intestines (3.3 nmol/min/mg protein) and liver (0.3 nmol/min/mg protein) using a novel coupled enzyme assay with microsomal lysoplasmalogenase as the coupling enzyme.  (+info)

Substrate specificity of lysophospholipase D which produces bioactive lysophosphatidic acids in rat plasma. (5/2602)

Previously we reported that lysophospholipase D in rat plasma hydrolyzes endogenous unsaturated lysophosphatidylcholines (LPCs) preferentially to saturated LPCs to lysophosphatidic acids with growth factor-like and hormone-like activities. In this study, we examined the possibility that association of LPCs with different proteins in rat plasma has an effect on the preference of lysophospholipase D for unsaturated LPCs. Large portions of various LPCs were found to be recovered in the lipoprotein-poor bottom fraction. Furthermore, the percentages of LPCs associated with albumin isolated from rat plasma were shown not to be consistent with their percentage conversions to lysophosphatidic acids by lysophospholipase D on incubation of rat plasma at 37 degrees C. These results indicate that distinct distributions of LPCs in the plasma protein fractions are not critical factors for the substrate specificity of lysophospholipase D. Experiments with Nagase analbuminemic rats suggested that albumin-LPC complexes are not necessarily required for the hydrolysis by lysophospholipase D; lipoprotein-associate LPCs appeared to be good substrates for the phospholipase. We found that both saturated and unsaturated LPCs are present mainly as 1-acyl isomers in rat plasma. This result indicates that the preference of lysophospholipase D for unsaturated LPCs is not attributable to a difference in position of the acyl group attached to the glycerol backbone of LPC. In addition, lysophospholipase D was also found to attack choline phospholipids with a long chain group and a short chain alkyl group, although their percentage hydrolyses were low. Taken altogether, these results suggest that lysophospholipase D shows higher affinities for free forms of unsaturated acyl type LPCs equilibrated with albumin-bound and lipoprotein-associated forms, than for free forms of saturated acyl type LPCs and analogs of platelet-activating factor.  (+info)

Sphingosine 1-phosphate: a prototype of a new class of second messengers. (6/2602)

Sphingosine 1-phosphate (SPP) is an important sphingolipid-derived second messenger in mammalian cells that acts to promote proliferation and to inhibit apoptosis. Various growth factors increase the intracellular concentration of SPP by activating sphingosine kinase, the molecular cloning of which has revealed that it defines a new type of lipid kinase. Cell fate is influenced by the balance between the intracellular concentration of SPP and that of ceramide, a pro-apoptotic sphingolipid metabolite. The observation that a similar "rheostat" is a determinant of cell survival in yeast cells exposed to heat shock indicates that it is an evolutionarily conserved mechanism of stress regulation. SPP also acts extracellularly to inhibit cell motility and to influence cell morphology, effects that appear to be mediated by the G protein-coupled receptor EDG1. These observations indicate that SPP is the prototype of a new class of lipid mediators that exert both intracellular and extracellular actions.  (+info)

Phenotypic transformation of normal rat kidney fibroblasts by endothelin-1. Different mode of action from lysophosphatidic acid, bradykinin, and prostaglandin f2alpha. (7/2602)

In the present study, we compared the effects of endothelin (ET)-1 on cell proliferation and second messenger induction in normal rat kidney (NRK) fibroblasts, with those of other activators of G-protein-coupled receptors such as prostaglandin (PG)-F2alpha, bradykinin (BK), and lysophosphatidic acid (LPA). LPA is mitogenic by itself, while the other factors require the presence of EGF. In density-arrested NRK cells, ET-1 and LPA induce phenotypic transformation rapidly, with similar kinetics as retinoic acid (RA) and transforming growth factor (TGF)-beta, while BK and PGF2alpha only do so with delayed kinetics. ET-1 and PGF2alpha are strong inducers of anchorage-independent growth, with a similar level of induction as TGFbeta, in contrast to LPA and BK. When investigating the second messenger generation, we found that ET-1 is the strongest activator of arachidonic acid release and phosphatidylinositol diphosphate hydrolysis. Only in the case of ET-1 the cell depolarization is not reversible upon removal of the factor. Similarly, only the ET-1-induced transient enhancement of intracellular calcium concentration is paralleled by both homologous and heterologous desensitization. In conclusion, these data show that ET-1 is a potent inducer of second messengers and phenotypic transformation in NRK cells, with characteristics that clearly differ from those of other activators of G-protein-coupled receptors, most likely as a result of prolonged receptor activation.  (+info)

Gi-mediated tyrosine phosphorylation of Grb2 (growth-factor-receptor-bound protein 2)-bound dynamin-II by lysophosphatidic acid. (8/2602)

Lysophosphatidic acid (LPA) is the prototypic G-protein-coupled receptor agonist that activates the Ras-mitogen-activated protein (MAP) kinase cascade through pertussis toxin (PTX)-sensitive Gi and enhanced tyrosine kinase activity. We recently detected a 100 kDa protein (p100) that binds to the C-terminal SH3 domain of growth-factor-receptor-bound protein 2 (Grb2) and becomes tyrosine phosphorylated in a PTX-sensitive manner in LPA-treated Rat-1 cells [Kranenburg, Verlaan, Hordijk and Moolenaar (1997) EMBO J. 16, 3097-3105]. Through glutathione S-transferase-Grb2 affinity purification and microsequencing, we have now identified p100 as dynamin-II, a GTPase that regulates clathrin-mediated endocytosis. We show that in Rat-1 cells, Grb2-bound dynamin-II is rapidly tyrosine phosphorylated in response to LPA in a PTX-sensitive manner. Thus, tyrosine phosphorylation of Grb2-bound dynamin-II may be a critical event in Gi-mediated activation of the Ras-MAP kinase cascade in fibroblasts.  (+info)