Solid-phase microextraction for cannabinoids analysis in hair and its possible application to other drugs. (1/1361)

This paper describes the application of solid-phase microextraction (SPME) to cannabis testing in hair. Fifty milligrams of hair was washed with petroleum ether, hydrolyzed with NaOH, neutralized, deuterated internal standard was added and directly submitted to SPME. The SPME was analyzed by GC-MS. The limit of detection was 0.1 ng/mg for cannabinol (CBN) and delta9-tetrahydrocannabinol (THC) and 0.2 ng/mg for cannabidiol (CBD). THC was detected in a range spanning from 0.1 to 0.7 ng/mg. CBD concentrations ranged from 0.7 to 14.1 ng/mg, and CBN concentrations ranged from 0.4 to 0.7 ng/mg. The effectiveness of different decontamination procedures was also studied on passively contaminated hair. The proposed method is also suitable for the analysis of methadone in hair; cocaine and cocaethylene can be detected in hair with SPME extraction after enzymatic hydrolysis.  (+info)

Acquisition of nicotine discrimination and discriminative stimulus effects of nicotine in rats chronically exposed to caffeine. (2/1361)

Caffeine and nicotine are the main psychoactive ingredients of coffee and tobacco, with a high frequency of concurrent use in humans. This study examined the effects of chronic caffeine exposure on 1) rates of acquisition of a nicotine discrimination (0.1 or 0.4 mg/kg, s.c., training doses) and 2) the pharmacological characteristics of the established nicotine discrimination in male Sprague-Dawley rats. Once rats learned to lever-press reliably under a fixed ratio of 10 schedule for food pellets, they were randomly divided into two groups; 12 animals were maintained continuously on caffeine added to the drinking water (3 mg/ml) and another 12 control rats continued to drink tap water. In each group of water- and caffeine-drinking rats, there were six rats trained to discriminate 0.1 mg/kg of nicotine from saline and six rats trained to discriminate 0.4 mg/kg of nicotine from saline. Regardless of the training dose of nicotine, both water- and caffeine-drinking groups required a comparable number of training sessions to attain reliable stimulus control, although there was a trend for a slower acquisition in the caffeine-drinking group trained with 0.1 mg/kg of nicotine. Tests for generalization to different doses of nicotine revealed no significant differences in potency of nicotine between water- and caffeine-drinking groups. The nicotinic-receptor antagonist mecamylamine blocked the discriminative effects of 0.1 and 0.4 mg/kg nicotine with comparable potency and efficacy in water- and caffeine-drinking groups. There was a dose-related generalization to both the 0.1 and 0.4 mg/kg nicotine cue (maximum average of 51-83%) in water-drinking rats after i.p. treatment with d-amphetamine, cocaine, the selective dopamine uptake inhibitor GBR-12909, apomorphine, and the selective dopamine D1 receptor agonist SKF-82958, but not in caffeine-drinking rats (0-22%). There was no generalization to the nicotine cues after i.p. treatment with caffeine or the selective D2 (NPA) and D3 (PD 128,907) dopamine-receptor agonists in water- and caffeine-drinking rats. The dopamine-release inhibitor CGS 10746B reduced the discriminative effects of 0.4 mg/kg nicotine in water-drinking rats, but not in caffeine-drinking rats. There was no evidence of development of tolerance or sensitization to nicotine's effects throughout the study. In conclusion, chronic caffeine exposure (average, 135 mg/kg/day) did not affect the rate of acquisition of the nicotine discrimination, but it did reduce the dopaminergic component of the nicotine-discriminative cue. The reduction of the dopaminergic component of the nicotine cue was permanent, as this effect was still evident after the caffeine solution was replaced with water in caffeine-drinking rats. That nicotine could reliably serve as a discriminative stimulus in the absence of the dopaminergic component of its discriminative cue may differentiate nicotine from "classical dopaminergic" drugs of abuse such as cocaine and amphetamine.  (+info)

Age-related reductions in [3H]WIN 35,428 binding to the dopamine transporter in nigrostriatal and mesolimbic brain regions of the fischer 344 rat. (3/1361)

In the present study, we used the potent cocaine analog [3H]WIN 35, 428 to map and quantify binding to the dopamine transporter (DAT) within the dorsal striatum, nucleus accumbens, substantia nigra, and ventral tegmental area in young (6-month-old), middle-aged (12-month-old), and aged (18- and 24-month-old) Fischer 344 rats. Quantitative autoradiographic analysis of indirect [3H]WIN 35,428 saturation curves revealed two-site binding for all four brain regions in every age group. The percentage of binding to the high- or low-affinity sites did not differ with age or region and was approximately 50%. However, significant age-related decreases in the overall density (Bmax) of [3H]WIN 35,428-binding sites were observed in the striatum, nucleus accumbens, substantia nigra, and ventral tegmental area. The Bmax within all brain regions declined by more than 15% every 6 months, with the Bmax in the aged (24-month-old) group being approximately half that measured in the young adult (6-month-old) group. Competition experiments indicated that nomifensine also exhibited two-site binding to the DAT in Fischer 344 rats. No consistent age-related differences in binding affinities were noted with either [3H]WIN 35,428 or nomifensine. Taken together, these results support the hypothesis that functional DATs within the nigrostriatal and mesolimbic systems are down-regulated with age, without changing their affinity for ligands.  (+info)

Characterization of [125I]RTI-121 binding to dopamine transporter in vitro. (4/1361)

AIM: To characterize the binding of [125I]3 beta-(4-iodophenyl) tropane-2 beta-carboxylic acid isopropyl ester (RTI-121) to the dopamine transporter (DAT) under physiologically relevant conditions. METHODS: [125I]RTI-121 was used to label the DAT on fresh rat striatum synaptosomal membranes in artificial cerebrospinal fluid (ACSF) at 37 degrees C. RESULTS: [125I]RTI-121 binding reached equilibrium within 3 min and remained at its plateau value for at least 9 min. The data from kinetic, saturation, and competition studies supported a one-site model for the binding of [125I]RTI-121 to the DAT. Various DAT blockers (oocaine, GBR12935, and BTCP) and substrates (dopamine and d-amphetamine) competitively inhibited the binding of [125I]RTI-121. Compared with NaPhos-KCl-NaCl assay buffer, ACSF containing Ca2+ and Mg2+ markedly increased the IC50 of DAT blockers for inhibiting [125I]RTI-121 binding with less effect on that of substrates. Various D2 receptor ligands (pergolide, quinirole, sulpiride, and l-stepholidine) had no direct effect on the binding of [125I]RTI-121. CONCLUSION: [125I]RTI-121 binding under physiologically relevant conditions fulfills the basic criteria for DAT binding assay.  (+info)

ATP-sensitive potassium channels regulate in vivo dopamine release in rat striatum. (5/1361)

ATP-sensitive K+ channels (K(ATP)) are distributed in a variety of tissues including smooth muscle, cardiac and skeletal muscle, pancreatic beta-cells and neurons. Since K(ATP) channels are present in the nigrostriatal dopamine (DA) pathway, the effect of potassium-channel modulators on the release of DA in the striatum of conscious, freely-moving rats was investigated. The extracellular concentration of DA was significantly decreased by the K(ATP)-channel opener (-)-cromakalim but not by diazoxide. (-)-Cromakalim was effective at 100 and 1000 microM concentrations, and the maximum decrease was 54% below baseline. d-Amphetamine significantly increased extracellular DA levels at the doses of 0.75 and 1.5 mg/kg, s.c. with a 770% maximum increase. (-)-Cromakalim had no effect on d-amphetamine-induced DA release, while glyburide, a K(ATP) blocker, significantly potentiated the effects of a low dose of d-amphetamine. These data indicate that K+ channels present in the nigrostriatal dopaminergic terminals modulate basal release as well as evoked release of DA.  (+info)

Comparison of effects of haloperidol administration on amphetamine-stimulated dopamine release in the rat medial prefrontal cortex and dorsal striatum. (6/1361)

Research has shown that there are important neurochemical differences between the mesocortical and mesostriatal dopamine systems. The work reported in this paper has sought to compare the regulation of dopamine release in the medial prefrontal cortex and the anterior caudate-putamen. In vivo microdialysis was used to recover dialysate fluid for subsequent assay for dopamine concentrations. The responses to D2 antagonist (haloperidol) administration, which has been shown to increase impulse-dependent dopamine release, were compared. Results demonstrated a diminished effect of systemic haloperidol administration on dopamine efflux in the prefrontal cortex. The responses to systemic administration of a nonimpulse-dependent, transporter-mediated, dopamine releaser (d-amphetamine) were also contrasted. Results again demonstrated a diminished pharmacological effect in the cortex. The potential interaction of stimulation of these two types of dopamine release was examined by coadministration of these compounds. Haloperidol pretreatment dramatically potentiated the dopamine-releasing effect of amphetamine administration. This effect was observed in both the cortex and the striatum. Subsequent work demonstrated that this effect of haloperidol was mediated by D2-like receptors in the prefrontal cortex. These results are discussed in relation to other neurochemical and neuroanatomical studies demonstrating sparse densities of dopamine transporter sites and dopamine D2 receptors in the cortex compared with the striatum. They demonstrate a functional correlate to the recently reported, largely extrasynaptic localization of dopamine transporter sites in the prefrontal cortex. Furthermore, they demonstrate the existence of cortical D2-like autoreceptors that may normally be "silent" under basal conditions.  (+info)

Female gonadal hormones differentially modulate cocaine-induced behavioral sensitization in Fischer, Lewis, and Sprague-Dawley rats. (7/1361)

Evidence suggests the existence of genetic differences in cocaine sensitization in male rats. The present study was undertaken to investigate cocaine sensitization in female rats of genetically distinct inbred (Fischer 344 and Lewis) and outbred (Sprague-Dawley) strains. All female rats were bilaterally ovariectomized and randomly assigned to one of four experimental groups: 1) estradiol benzoate group, 2) progesterone group, 3) estradiol benzoate-plus-progesterone group, and 4) ovariectomized group. Additional controls included sham-operated female rats, female rats that received a single oil injection, and female rats that received repeated oil injections. To determine gender-related differences in the acute and chronic effects of cocaine, data obtained from female rats were compared with those from strain- and weight-matched male rats. Estradiol benzoate-plus-progesterone female rats showed greater locomotor effect in response to an acute dose of cocaine and had more robust sensitization in response to repeated cocaine than did male rats. The bilateral removal of ovaries abolished cocaine sensitization. In all strains of rats studied, progesterone alone did not alter the ovariectomy-induced attenuation of cocaine behavior, but estrogen alone restored cocaine-induced behavioral sensitization. There were significant strain effects on the degree of gonadal hormonal-induced modulation of cocaine sensitization in female rats. Female Lewis rats were extremely sensitive to repeated-cocaine effects, whereas the Fischer 344 female rats showed only marginal effects. The Sprague-Dawley rats ranked intermediate in their behavioral sensitivity. The present study strongly supports the hypothesis that female rats are more sensitive to both acute and chronic behavioral effects of cocaine than are male rats and that the effects are strain dependent. It also shows that estrogen plays an important role in the increased sensitivity of female rats to cocaine sensitization. Together, these data indicate significant interactions between ovarian steroid hormones and genetic factors in cocaine-induced behavioral effects.  (+info)

Behavioral and neurochemical effects of the dopamine transporter ligand 4-chlorobenztropine alone and in combination with cocaine in vivo. (8/1361)

The current studies evaluated the novel diphenylmethoxytropane analog 4-chlorobenztropine (4-Cl-BZT), cocaine, and combinations of the two drugs for their abilities to stimulate locomotor activity, produce cocaine-like discriminative stimulus effects, and elevate extracellular dopamine (DA) in the nucleus accumbens (NAc) as measured by in vivo microdialysis. Peripherally administered cocaine was approximately twice as efficacious as 4-Cl-BZT as a locomotor stimulant and was behaviorally active at a lower dose than was 4-Cl-BZT. Cocaine also was more efficacious than 4-Cl-BZT in producing discriminative-stimulus effects in rats trained to discriminate i.p. injections of 10 mg/kg cocaine from saline. The time course of behavioral activation differed markedly between the two drugs, with much shorter onset and duration of locomotor stimulant effects for cocaine relative to 4-Cl-BZT. Similarly, i.p. cocaine (10 and 40 mg/kg) induced a pronounced, rapid, and short-lived increase in DA in the NAc, whereas i.p. 4-Cl-BZT was effective only at the higher dose and produced a more gradual, modest, and sustained (>/=2 h) elevation in accumbens DA. In contrast to i.p. administration, local infusion of 4-Cl-BZT (1-100 microM) into the NAc through the microdialysis probe elevated extracellular DA to a much greater extent than did local cocaine (nearly 2000% of baseline maximally for 4-Cl-BZT versus 400% of baseline for cocaine) and displayed a much longer duration of action than cocaine. However, when microinjected bilaterally into the NAc at 30 or 300 nmol/side, cocaine remained a more efficacious locomotor stimulant than 4-Cl-BZT. Finally, pretreatment with i.p. 4-Cl-BZT dose dependently enhanced the locomotor stimulant, discriminative stimulus effects, and NAc DA response to a subsequent low-dose i.p. cocaine challenge. The diphenylmethoxytropane analog also facilitated the emergence of stereotyped behavior and convulsions induced by high-dose cocaine. The current results demonstrate that DA transporter ligands that do not share the neurochemical and behavioral profiles of cocaine nevertheless may enhance the effects of cocaine in vivo.  (+info)