The Ice Man's diet as reflected by the stable nitrogen and carbon isotopic composition of his hair. (1/1034)

Establishing the diets of ancient human populations is an integral component of most archaeological studies. Stable isotope analysis of well-preserved bone collagen is the most direct approach for a general assessment of paleodiet. However, this method has been limited by the scarcity of well-preserved skeletal materials for this type of destructive analysis. Hair is preserved in many burials, but is often overlooked as an alternative material for isotopic analysis. Here we report that the stable carbon and nitrogen isotope values for the hair of the 5200 year-old Ice Man indicates a primarily vegetarian diet, in agreement with his dental wear pattern. Whereas previous investigations have focused on bone collagen, the stable isotope composition of hair may prove to be a more reliable proxy for paleodiet reconstruction, particularly when skeletal remains are not well preserved and additional archaeological artifacts are unavailable.  (+info)

Distribution of haplotypes from a chromosome 21 region distinguishes multiple prehistoric human migrations. (2/1034)

Despite mounting genetic evidence implicating a recent origin of modern humans, the elucidation of early migratory gene-flow episodes remains incomplete. Geographic distribution of haplotypes may show traces of ancestral migrations. However, such evolutionary signatures can be erased easily by recombination and mutational perturbations. A 565-bp chromosome 21 region near the MX1 gene, which contains nine sites frequently polymorphic in human populations, has been found. It is unaffected by recombination and recurrent mutation and thus reflects only migratory history, genetic drift, and possibly selection. Geographic distribution of contemporary haplotypes implies distinctive prehistoric human migrations: one to Oceania, one to Asia and subsequently to America, and a third one predominantly to Europe. The findings with chromosome 21 are confirmed by independent evidence from a Y chromosome phylogeny. Loci of this type will help to decipher the evolutionary history of modern humans.  (+info)

A modern human pattern of dental development in lower pleistocene hominids from Atapuerca-TD6 (Spain). (3/1034)

The study of life history evolution in hominids is crucial for the discernment of when and why humans have acquired our unique maturational pattern. Because the development of dentition is critically integrated into the life cycle in mammals, the determination of the time and pattern of dental development represents an appropriate method to infer changes in life history variables that occurred during hominid evolution. Here we present evidence derived from Lower Pleistocene human fossil remains recovered from the TD6 level (Aurora stratum) of the Gran Dolina site in the Sierra de Atapuerca, northern Spain. These hominids present a pattern of development similar to that of Homo sapiens, although some aspects (e.g., delayed M3 calcification) are not as derived as that of European populations and people of European origin. This evidence, taken together with the present knowledge of cranial capacity of these and other late Early Pleistocene hominids, supports the view that as early as 0.8 Ma at least one Homo species shared with modern humans a prolonged pattern of maturation.  (+info)

How clonal are human mitochondria? (4/1034)

Phylogenetic trees constructed using human mitochondrial sequences contain a large number of homoplasies. These are due either to repeated mutation or to recombination between mitochondrial lineages. We show that a tree constructed using synonymous variation in the protein coding sequences of 29 largely complete human mitochondrial molecules contains 22 homoplasies at 32 phylogenetically informative sites. This level of homoplasy is very unlikely if inheritance is clonal, even if we take into account base composition bias. There must either be 'hypervariable' sites or recombination between mitochondria. We present evidence which suggests that hypervariable sites do not exist in our data. It therefore seems likely that recombination has occurred between mitochondrial lineages in humans.  (+info)

The robust australopithecine face: a morphogenetic perspective. (5/1034)

The robust australopithecines were a side branch of human evolution. They share a number of unique craniodental features that suggest their monophyletic origin. However, virtually all of these traits appear to reflect a singular pattern of nasomaxillary modeling derived from their unusual dental proportions. Therefore, recent cladistic analyses have not resolved the phylogenetic history of these early hominids. Efforts to increase cladistic resolution by defining traits at greater levels of anatomical detail have instead introduced substantial phyletic error.  (+info)

New evidence from Le Moustier 1: computer-assisted reconstruction and morphometry of the skull. (6/1034)

In this study, we present a new computerized reconstruction of the Le Moustier 1 Neanderthal skull and discuss its significance for Neanderthal growth and variability. Because of the precarious state of preservation of the original material, we applied entirely noninvasive methods of fossil reconstruction and morphometry, using a combination of computed tomography, computer graphics, and stereolithography. After electronic restoration, the isolated original pieces were recomposed on the computer screen using external and internal anatomical clues to position the bone fragments and mirror images to complete missing parts. The inferred effects of general compressive deformation that occurred during fossilization were corrected by virtual decompression of the skull. The resulting new reconstruction of the Le Moustier 1 skull shows morphologic features close to the typical Neanderthal adult state. Residual asymmetry of skeletal parts can be traced to in vivo skeletal modification: the left mandibular joint shows signs of a healed condylar fracture, and the anatomy of the occipital region suggests mild plagiocephaly. Using micro-CT analysis, the left incus could be recovered from the matrix filling of the middle ear cavity. Its morphometric dimensions are similar to those of the La Ferrassie III incus. The morphometric characteristics of the inner ear deviate substantially from the condition reported as typical for Neanderthals and fall within the range of modern human variability.  (+info)

Environment and behavior of 2.5-million-year-old Bouri hominids. (7/1034)

The Hata Member of the Bouri Formation is defined for Pliocene sedimentary outcrops in the Middle Awash Valley, Ethiopia. The Hata Member is dated to 2.5 million years ago and has produced a new species of Australopithecus and hominid postcranial remains not currently assigned to species. Spatially associated zooarchaeological remains show that hominids acquired meat and marrow by 2.5 million years ago and that they are the near contemporary of Oldowan artifacts at nearby Gona. The combined evidence suggests that behavioral changes associated with lithic technology and enhanced carnivory may have been coincident with the emergence of the Homo clade from Australopithecus afarensis in eastern Africa.  (+info)

Australopithecus garhi: a new species of early hominid from Ethiopia. (8/1034)

The lack of an adequate hominid fossil record in eastern Africa between 2 and 3 million years ago (Ma) has hampered investigations of early hominid phylogeny. Discovery of 2.5 Ma hominid cranial and dental remains from the Hata beds of Ethiopia's Middle Awash allows recognition of a new species of Australopithecus. This species is descended from Australopithecus afarensis and is a candidate ancestor for early Homo. Contemporary postcranial remains feature a derived humanlike humeral/femoral ratio and an apelike upper arm-to-lower arm ratio.  (+info)