A steric mechanism for inhibition of CO binding to heme proteins. (25/5209)

The crystal structures of myoglobin in the deoxy- and carbon monoxide-ligated states at a resolution of 1.15 angstroms show that carbon monoxide binding at ambient temperatures requires concerted motions of the heme, the iron, and helices E and F for relief of steric inhibition. These steps constitute the main mechanism by which heme proteins lower the affinity of the heme group for the toxic ligand carbon monoxide.  (+info)

Distinct molecular bases for pH sensitivity of the guard cell K+ channels KST1 and KAT1. (26/5209)

Acid-induced potassium uptake through K+ channels is a prerequisite for stomatal opening. Our previous studies identified a pore histidine as a major component of the acid activation mechanism of the potato guard cell K+ channel KST1 (1). Although this histidine is highly conserved among all plant K+ uptake channels cloned so far, the pH-dependent gating of the Arabidopsis thaliana guard cell K+ channel KAT1 was not affected by mutations of this histidine. In both channels, KST1 and KAT1, aspartate mutants in the K+ channel consensus sequence GYGD adjacent to the histidine (KST1-D269N and KAT1-D265N) were inhibited by a rise in the extracellular proton concentration. pH changes affected the half-maximal activation voltage V(1)/(2) of the KST1 mutant, whereas in the mutant channel KAT1-D265N an acid-induced decrease in the maximum conductance gmax indicated the presence of a proton block. In contrast to the wild type KST1, the S4-mutant channel KST1-R181Q exhibited an activation upon alcalization of the extracellular solution. From our electrophysiological studies on channel mutants with respect to the pore histidine as well as the aspartate, we conclude that the common proton-supported shift in the voltage dependence of KST1 and KAT1 is based on distinct molecular elements.  (+info)

Identification of three cysteines as targets for the Zn2+ blockade of the human skeletal muscle chloride channel. (27/5209)

Currents through the human skeletal muscle chloride channel hClC-1 can be blocked by external application of 1 mM Zn2+ or the histidine-reactive compound diethyl pyrocarbonate (DEPC). The current block by Zn2+ strongly depends on the external pH (pKa near 6.9), whereas the block by DEPC is rather independent of the pH in the range of 5.5 to 8.5. To identify the target sites of these reagents, we constructed a total of twelve cysteine- and/or histidine-replacement mutants, transfected tsA201 cells with them, and investigated the resulting whole-cell chloride currents. The majority of the mutants exhibited a similar sensitivity toward Zn2+ or DEPC as wild type (WT) channels. Block by 1 mM Zn2+ was nearly absent only with the mutant C546A. Four mutants (C242A, C254A, H180A, and H451A) were slightly less sensitive to Zn2+ than WT. Tests with double, triple, and quadruple mutants yielded that, in addition to C546, C242 and C254 are also most likely participating in Zn2+-binding.  (+info)

The structure and unusual pH dependence of plastocyanin from the fern Dryopteris crassirhizoma. The protonation of an active site histidine is hindered by pi-pi interactions. (28/5209)

Spectroscopic properties, amino acid sequence, electron transfer kinetics, and crystal structures of the oxidized (at 1.7 A resolution) and reduced form (at 1.8 A resolution) of a novel plastocyanin from the fern Dryopteris crassirhizoma are presented. Kinetic studies show that the reduced form of Dryopteris plastocyanin remains redox-active at low pH, under conditions where the oxidation of the reduced form of other plastocyanins is inhibited by the protonation of a solvent-exposed active site residue, His87 (equivalent to His90 in Dryopteris plastocyanin). The x-ray crystal structure analysis of Dryopteris plastocyanin reveals pi-pi stacking between Phe12 and His90, suggesting that the active site is uniquely protected against inactivation. Like higher plant plastocyanins, Dryopteris plastocyanin has an acidic patch, but this patch is located closer to the solvent-exposed active site His residue, and the total number of acidic residues is smaller. In the reactions of Dryopteris plastocyanin with inorganic redox reagents, the acidic patch (the "remote" site) and the hydrophobic patch surrounding His90 (the "adjacent" site) are equally efficient for electron transfer. These results indicate the significance of the lack of protonation at the active site of Dryopteris plastocyanin, the equivalence of the two electron transfer sites in this protein, and a possibility of obtaining a novel insight into the photosynthetic electron transfer system of the first vascular plant fern, including its molecular evolutionary aspects. This is the first report on the characterization of plastocyanin and the first three-dimensional protein structure from fern plant.  (+info)

Molecular mechanisms of peptide loading by the tumor rejection antigen/heat shock chaperone gp96 (GRP94). (29/5209)

Complexes of gp96/GRP94 and peptides have been shown to elicit immunogenicity. We used fluorescence to understand peptide association with gp96. A pyrene-peptide conjugate was complexed with gp96 under a variety of conditions. At room temperature in low salt (20 mM NaCl), the peptide binds gp96 with a strong affinity (approximately 100-150 nM) and forms pyrene excimers, suggesting that the peptides were assembled as dimers. In high salt (2.2 M NaCl), although peptide binding was stronger (Ka approximately 55 nM) than in low salt, pyrene excimers were absent, implying that peptides were farther apart in the complex. Heat shock-activated peptide binding exhibited characteristics of both low salt and high salt modes of binding. Anisotropy and average lifetime of the bound pyrene suggested that peptides were probably located in a solvent-accessible hydrophobic binding pocket in low salt, whereas in high salt, the peptide may be buried in a less hydrophobic (more hydrophilic) environment. These results suggested that peptide-gp96 complexes were assembled in several different ways, depending on the assembly conditions. Resonance energy transfer between the intrinsic tryptophan(s) in gp96 and pyrene suggested that one or more tryptophan residues were within the critical Forster distance of 27-30 A from the pyrene in the bound peptide. It is proposed that peptides are assembled within higher order gp96 complexes (dimers, etc.) in a hydrophobic pocket and that there may be a conformational change in gp96 leading to an open configuration for peptide loading.  (+info)

Chemical modification of NADP-isocitrate dehydrogenase from Cephalosporium acremonium evidence of essential histidine and lysine groups at the active site. (30/5209)

NADP-isocitrate dehydrogenase from Cephalosporium acremonium CW-19 has been inactivated by diethyl pyrocarbonate following a first-order process giving a second-order rate constant of 3.0 m-1. s-1 at pH 6.5 and 25 degrees C. The pH-inactivation rate data indicated the participation of a group with a pK value of 6.9. Quantifying the increase in absorbance at 240 nm showed that six histidine residues per subunit were modified during total inactivation, only one of which was essential for catalysis, and substrate protection analysis would seem to indicate its location at the substrate binding site. The enzyme was not inactivated by 5, 5'-dithiobis(2-nitrobenzoate), N-ethylmaleimide or iodoacetate, which would point to the absence of an essential reactive cysteine residue at the active site. Pyridoxal 5'-phosphate reversibly inactivated the enzyme at pH 7.7 and 5 degrees C, with enzyme activity declining to an equilibrium value within 15 min. The remaining activity depended on the modifier concentration up to about 2 mm. The kinetic analysis of inactivation and reactivation rate data is consistent with a reversible two-step inactivation mechanism with formation of a noncovalent enzyme-pyridoxal 5'-phosphate complex prior to Schiff base formation with a probable lysyl residue of the enzyme. The analysis of substrate protection shows the essential residue(s) to be at the active site of the enzyme and probably to be involved in catalysis.  (+info)

The recombinant third domain of human alpha-fetoprotein retains the antiestrotrophic activity found in the full-length molecule. (31/5209)

Previous studies have shown that alpha-fetoprotein (AFP) interferes with estrogen (E2)-stimulated growth, including E2-stimulated breast cancer growth. In an effort to localize the antiestrotrophic portion of the molecule, the C-terminal one-third (200 amino acids) of human AFP, known as Domain III, was produced in a baculovirus expression system as a fusion protein containing an amino terminal histidine tag. The histidine tag was included to facilitate purification by metal ion affinity chromatography. The purified recombinant Domain III fusion protein was functionally similar to full-length natural AFP isolated from human cord sera or from cultured human hepatoma cells (HepG2) in that they all produced significant and quantitatively similar inhibition of E2-stimulated growth of immature mouse uterus. Furthermore, the dose-response profiles of the recombinant Domain III AFP and natural full-length AFP were similar. Preincubation of either protein in a molar excess of E2 lowered the minimally effective antiestrotrophic dose and produced a difference spectrum consistent with a change in conformation. These findings indicate that the antiestrotrophic activity of AFP is contained within the third domain of the molecule, and they have obvious implications for the production of biologically active peptides derived from this portion of the AFP molecule.  (+info)

Identification of metal ligands in the Clostridium histolyticum ColH collagenase. (32/5209)

A Clostridium histolyticum 116-kDa collagenase has an H415EXXH motif but not the third zinc ligand, as found in already characterized zinc metalloproteinases. To identify its catalytic site, we mutated the codons corresponding to the three conserved residues in the motif to other amino acid residues. The mutation affecting His415 or His419 abolished catalytic activity and zinc binding, while that affecting Glu416 did the former but not the latter. These results suggest that the motif forms the catalytic site. We also mutated the codons corresponding to other amino acid residues that are likely zinc ligands. The mutation affecting Glu447 decreased markedly both the enzymatic activity and the zinc content, while that affecting Glu446 or Glu451 had smaller effects on activity and zinc binding. These mutations caused a decrease in kcat but no significant change in Km. These results are consistent with the hypothesis that Glu447 is the third zinc ligand. The spacing of the three zinc ligands is the same in all known clostridial collagenases but not in other known gluzincins, indicating that they form a new gluzincin subfamily. The effects of mutations affecting Glu446 and Glu451 suggest that the two residues are also involved in catalysis, possibly through an interaction with the two zinc-binding histidine residues.  (+info)