Role of the sympathetic nervous system and insulin in enhancing glucose uptake in peripheral tissues after intrahypothalamic injection of leptin in rats. (73/4503)

Our previous study demonstrated that microinjection of leptin into the ventromedial hypothalamus (VMH) dramatically increased glucose uptake in the heart, brown adipose tissue (BAT), and skeletal muscles, but not in white adipose tissue (WAT) in conscious unrestrained rats, as assessed in vivo by the 2-[3H]deoxyglucose method. Here we examined the role of the sympathetic nervous system and insulin in enhanced glucose uptake by tissues after hypothalamic leptin injection. Pretreatment with guanethidine significantly suppressed the increased glucose uptake by the tissues in response to leptin injected into the VMH, whereas bilateral adrenal demedullation had no significant effect. Treatment with propranolol but not phenoxybenzamine also decreased significantly enhanced glucose uptake by the tissues. We further examined the interaction of the effects of hypothalamic leptin and insulin administered peripherally by clamping the glucose concentrations at a constant level. When leptin was injected into the VMH and a maximal dose of insulin was administered intravenously, the rates of glucose uptake by the heart, BAT, and skeletal muscles, but not by WAT, markedly increased beyond the values reached by insulin stimulation alone. Surgical sympathetic denervation of BAT abolished the enhancement of glucose uptake in this tissue, decreasing to the level stimulated by insulin alone. These results appear to indicate that leptin in the hypothalamus enhances glucose uptake in certain peripheral tissues through mediation of a beta-adrenergic mechanism for the sympathetic nerves innervating the tissues and that central leptin and peripheral insulin have a synergistic role in augmenting tissue glucose uptake.  (+info)

Altered hypothalamic function in response to glucose ingestion in obese humans. (74/4503)

The hypothalamus plays a central role in the regulation of energy intake and feeding behavior. However, the presence of a functional abnormality in the hypothalamus in humans that may be related to excess energy intake and obesity has yet to be demonstrated in vivo. We, therefore, used functional magnetic resonance imaging (fMRI) to monitor hypothalamic function after oral glucose intake. The 10 obese (34 +/- 2 years of age, BMI 34.2 +/- 1.3 kg/m2) and 10 lean (32 +/- 4 years of age, BMI 22.0 +/- 0.9 kg/m2) subjects with normal glucose tolerance ingested 75 g of glucose while a midsagittal slice through the hypothalamus was continuously imaged for 50 min using a conventional T2*-weighted gradient-echo pulse sequence. After glucose ingestion, lean subjects demonstrated an inhibition of the fMRI signal in the areas corresponding to the paraventricular and ventromedial nuclei. In obese subjects, this inhibitory response was markedly attenuated (4.8 +/- 1.3 vs. 7.0 +/- 0.6% inhibition, P < 0.05) and delayed (9.4 +/- 0.5 vs. 6.4 +/- 0.5 min, P < 0.05) compared with that observed in lean subjects. The time taken to reach the maximum inhibitory response correlated with the fasting plasma glucose (r = 0.75, P < 0.001) and insulin (r = 0.47, P < 0.05) concentrations in both lean and obese subjects. These results demonstrate in vivo, for the first time, the existence of differential hypothalamic function in lean and obese humans that may be secondary to obesity.  (+info)

Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. (75/4503)

Neurons containing the neuropeptide orexin (hypocretin) are located exclusively in the lateral hypothalamus and send axons to numerous regions throughout the central nervous system, including the major nuclei implicated in sleep regulation. Here, we report that, by behavioral and electroencephalographic criteria, orexin knockout mice exhibit a phenotype strikingly similar to human narcolepsy patients, as well as canarc-1 mutant dogs, the only known monogenic model of narcolepsy. Moreover, modafinil, an anti-narcoleptic drug with ill-defined mechanisms of action, activates orexin-containing neurons. We propose that orexin regulates sleep/wakefulness states, and that orexin knockout mice are a model of human narcolepsy, a disorder characterized primarily by rapid eye movement (REM) sleep dysregulation.  (+info)

Effect of extracellular pH on GABA-activated current in rat recombinant receptors and thin hypothalamic slices. (76/4503)

We studied the effects of extracellular pH (pHo) on gamma-aminobutyric acid (GABA)-mediated Cl- current in rat hypothalamic neurons and recombinant type-A GABA (GABA(A)) receptors stably expressed in human embryonic kidney cells (HEK 293), using whole cell and outside-out patch-clamp recordings. In alpha3beta2gamma2s receptors, acidic pH decreased, whereas alkaline pH increased the response to GABA in a reversible and concentration-dependent manner. Acidification shifted the GABA concentration-response curve to the right, significantly increasing the EC50 for GABA without appreciably changing the slope or maximal current induced by GABA. We obtained similar effects of pH in alpha1beta2gamma2 receptors and in GABA-activated currents recorded from thin hypothalamic brain slices. In outside-out patches recorded from alpha3beta2gamma2 recombinant receptors, membrane patches were exposed to 5 microM GABA at control (7.3), acidic (6.4), or alkaline (8.4) pH. GABA activated main and subconductance states of 24 and 16 pS, respectively, in alpha3beta2gamma2 receptors. Alkaline pH(o) increased channel opening frequency and decreased the duration of the long closed state, resulting in an increase in open probability (from 0.0801 +/- 0.015 in pH 7.3 to 0.138 +/- 0.02 in pH 8.4). Exposure of the channels to acidic pH(o) had the opposite effects on open probability (decreased to 0.006 +/- 0.0001). Taken together, our results indicate that the function of GABA(A) receptors is modulated by extracellular pH. The proton effect is similar in recombinant and native receptors and is dependent on GABA concentration. In addition, the effect appears to be independent of the alpha-subunit isoform, and is due to the ability of H+ to alter the frequency of channel opening. Our findings indicate that GABAergic signaling in the CNS may be significantly altered during conditions that increase or decrease pH.  (+info)

CFTR is functionally active in GnRH-expressing GT1-7 hypothalamic neurons. (77/4503)

We have demonstrated the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, mRNA, and protein within the rat and human brains, in areas regulating sexual differentiation and function. We have found that GT1-7, a gonadotropin-releasing hormone (GnRH)-secreting hypothalamic neuronal cell line, expresses the CFTR gene, mRNA, and protein and cAMP-dependent (36)Cl efflux. A linear 7-pS Cl- conductance, which is stimulated by ATP and cAMP analogs and inhibited by glibenclamide, consistent with CFTR activity, has been identified in GT1-7 cells. Antisense oligo(dN) generated against exon 10 of the CFTR gene transcript (mRNA) inhibit GnRH secretion into media [312 +/- 73, 850 +/- 150, 963 +/- 304, and 912 +/- 74 pg GnRH/4 x 10(6) cells for antisense, sense, missense, and no oligo(dN), respectively; P < 0. 029 for antisense oligo(dN)-treated vs. normal cells]. No changes in intracellular synthesis of GnRH were noted [1,400 +/- 371 and 1,395 +/- 384 pg GnRH/4 x 10(6) cells for antisense and sense oligo(dN), respectively]. Antisense oligo(dN), but not sense or missense oligo(dN), inhibited cAMP-dependent 36Cl efflux. The expression of CFTR protein, detected by Western blotting, was also inhibited 68% by preincubation of cells with antisense oligo(dN). GT1-7 hypothalamic neurons express the CFTR gene, mRNA, and protein, which modulate neurosecretion. Abnormal neuropeptide vesicle trafficking by mutant CFTR may help to explain some of the diverse manifestations of cystic fibrosis.  (+info)

Activation of hypothalamic serotonin receptors reduced intake of dietary fat and protein but not carbohydrate. (78/4503)

Systemic treatment with dexfenfluramine (dF), fluoxetine, or serotonin (5-hydroxytryptamine, 5-HT) recently was shown to suppress fat and occasionally protein but not carbohydrate intake in rats when a macronutrient selection paradigm was employed. These reports contrast with the prevailing literature, which for the past decade has described a role for serotonin neurotransmission in the modification of dietary carbohydrate consumption. To test the hypothesis that the suppression of fat selection and/or consumption by systemic serotonin agonists involves stimulation of central 5-HT receptors, a series of experiments was performed in nondeprived rats. In experiment 1, third cerebroventricular (3V) infusion of the nonselective 5-HT antagonist metergoline prevented the reduction in fat but not carbohydrate feeding caused by systemic dF. Furthermore, 3V metergoline alone increased fat intake. In experiments 2 and 3, 3V infusion of 5-HT(1B/2C) receptor agonists D-norfenfluramine (DNF) or quipazine inhibited fat intake exclusively. Next, the infusion of DNF or 5-HT into the region of the paraventricular nucleus (PVN) reduced both fat and protein intake (experiments 4 and 5). Finally, in experiment 6, when rats were grouped by baseline diet preference, 5-HT infused into the PVN led to a dose-related decrease in fat intake in both carbohydrate- and fat-preferring rats. In contrast, there were no dose effects of 5-HT on carbohydrate or protein intake in either preference group. However, in fat-preferring rats, the highest dose of 5-HT reduced intake of all three macronutrient diets. These results demonstrate a selective effect of exogenous serotonergic drugs in the hypothalamus to reduce fat rather than carbohydrate intake and suggest that higher baseline fat intake enhances responsivity to serotonergic drugs.  (+info)

Distribution and quantification of immunoreactive orexin A in rat tissues. (79/4503)

A sensitive and specific radioimmunoassay for orexin A was developed. Orexin A immunoreactivity was found to be confined to the central nervous system (CNS) with the highest concentrations in the hypothalamus, inferior and superior colliculi and brainstem. Within the hypothalamus, the highest levels were found in the lateral and posterior hypothalamus. These regions had a greater orexin A content in females compared to males. The orexin A content of hypothalamic regions did not change with fasting and no difference was noted in hypothalami of rats fed a high fat diet. The hypothalamic orexin A content was not different in obese Zucker rats compared to lean controls. Thus, orexin A has a wide distribution in the CNS, but appetite regulation may not be its main function.  (+info)

Effects of blocking GABA degradation on corticotropin-releasing hormone gene expression in selected brain regions. (80/4503)

PURPOSE: The gamma-aminobutyric acid (GABA) degradation blocker gamma-vinyl-GABA (VGB) is used clinically to treat seizures in both adult and immature individuals. The mechanism by which VGB controls developmental seizures is not fully understood. Specifically, whether the anticonvulsant properties of VGB arise only from its elevation of brain GABA levels and the resulting activation of GABA receptors, or also from associated mechanisms, remains unresolved. Corticotropin-releasing hormone (CRH), a neuropeptide present in many brain regions involved in developmental seizures, is a known convulsant in the immature brain and has been implicated in some developmental seizures. In certain brain regions, it has been suggested that CRH synthesis and release may be regulated by GABA. Therefore we tested the hypothesis that VGB decreases CRH gene expression in the immature rat brain, consistent with the notion that VGB may decrease seizures also by reducing the levels of the convulsant molecule, CRH. METHODS: VGB was administered to immature, 9-day-old rats in clinically relevant doses, whereas littermate controls received vehicle. RESULTS: In situ hybridization histochemistry demonstrated a downregulation of CRH mRNA levels in the hypothalamic paraventricular nucleus but not in other limbic regions of VGB-treated pups compared with controls. In addition, VGB-treated pups had increased CRH peptide levels in the anterior hypothalamus, as shown by radioimmunoassay. CONCLUSIONS: These findings are consistent with a reduction of both CRH gene expression and secretion in the hypothalamus, but do not support an indirect anticonvulsant mechanism of VGB via downregulation of CRH levels in limbic structures. However, the data support a region-specific regulation of CRH gene expression by GABA.  (+info)