Pseudouridine mapping in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (snRNAs) reveals that pseudouridine synthase pus1p exhibits a dual substrate specificity for U2 snRNA and tRNA. (1/1396)

Pseudouridine (Psi) residues were localized in the Saccharomyces cerevisiae spliceosomal U small nuclear RNAs (UsnRNAs) by using the chemical mapping method. In contrast to vertebrate UsnRNAs, S. cerevisiae UsnRNAs contain only a few Psi residues, which are located in segments involved in intermolecular RNA-RNA or RNA-protein interactions. At these positions, UsnRNAs are universally modified. When yeast mutants disrupted for one of the several pseudouridine synthase genes (PUS1, PUS2, PUS3, and PUS4) or depleted in rRNA-pseudouridine synthase Cbf5p were tested for UsnRNA Psi content, only the loss of the Pus1p activity was found to affect Psi formation in spliceosomal UsnRNAs. Indeed, Psi44 formation in U2 snRNA was abolished. By using purified Pus1p enzyme and in vitro-produced U2 snRNA, Pus1p is shown here to catalyze Psi44 formation in the S. cerevisiae U2 snRNA. Thus, Pus1p is the first UsnRNA pseudouridine synthase characterized so far which exhibits a dual substrate specificity, acting on both tRNAs and U2 snRNA. As depletion of rRNA-pseudouridine synthase Cbf5p had no effect on UsnRNA Psi content, formation of Psi residues in S. cerevisiae UsnRNAs is not dependent on the Cbf5p-snoRNA guided mechanism.  (+info)

Aspartate kinase-independent lysine synthesis in an extremely thermophilic bacterium, Thermus thermophilus: lysine is synthesized via alpha-aminoadipic acid not via diaminopimelic acid. (2/1396)

An aspartate kinase-deficient mutant of Thermus thermophilus, AK001, was constructed. The mutant strain did not grow in a minimal medium, suggesting that T. thermophilus contains a single aspartate kinase. Growth of the mutant strain was restored by addition of both threonine and methionine, while addition of lysine had no detectable effect on growth. To further elucidate the lysine biosynthetic pathway in T. thermophilus, lysine auxotrophic mutants of T. thermophilus were obtained by chemical mutagenesis. For all lysine auxotrophic mutants, growth in a minimal medium was not restored by addition of diaminopimelic acid, whereas growth of two mutants was restored by addition of alpha-aminoadipic acid, a precursor of lysine in biosynthetic pathways of yeast and fungi. A BamHI fragment of 4.34 kb which complemented the lysine auxotrophy of a mutant was cloned. Determination of the nucleotide sequence suggested the presence of homoaconitate hydratase genes, termed hacA and hacB, which could encode large and small subunits of homoaconitate hydratase, in the cloned fragment. Disruption of the chromosomal copy of hacA yielded mutants showing lysine auxotrophy which was restored by addition of alpha-aminoadipic acid or alpha-ketoadipic acid. All of these results indicated that in T. thermophilus, lysine was not synthesized via the diaminopimelic acid pathway, believed to be common to all bacteria, but via a pathway using alpha-aminoadipic acid as a biosynthetic intermediate.  (+info)

Phosphorylation of TFIIA stimulates TATA binding protein-TATA interaction and contributes to maximal transcription and viability in yeast. (3/1396)

Posttranslational modification of general transcription factors may be an important mechanism for global gene regulation. The general transcription factor IIA (TFIIA) binds to the TATA binding protein (TBP) and is essential for high-level transcription mediated by various activators. Modulation of the TFIIA-TBP interaction is a likely target of transcriptional regulation. We report here that Toa1, the large subunit of yeast TFIIA, is phosphorylated in vivo and that this phosphorylation stabilizes the TFIIA-TBP-DNA complex and is required for high-level transcription. Alanine substitution of serine residues 220, 225, and 232 completely eliminated in vivo phosphorylation of Toa1, although no single amino acid substitution of these serine residues eliminated phosphorylation in vivo. Phosphorylated TFIIA was 30-fold more efficient in forming a stable complex with TBP and TATA DNA. Dephosphorylation of yeast-derived TFIIA reduced DNA binding activity, and recombinant TFIIA could be stimulated by in vitro phosphorylation with casein kinase II. Yeast strains expressing the toa1 S220/225/232A showed reduced high-level transcriptional activity at the URA1, URA3, and HIS3 promoters but were viable. However, S220/225/232A was synthetically lethal when combined with an alanine substitution mutation at W285, which disrupts the TFIIA-TBP interface. Phosphorylation of TFIIA could therefore be an important mechanism of transcription modulation, since it stimulates TFIIA-TBP association, enhances high-level transcription, and contributes to yeast viability.  (+info)

minifly, a Drosophila gene required for ribosome biogenesis. (4/1396)

We report here the genetic, molecular, and functional characterization of the Drosophila melanogaster minifly (mfl) gene. Genetic analysis shows that mfl is essential for Drosophila viability and fertility. While P-element induced total loss-of-function mutations cause lethality, mfl partial loss-of-function mutations cause pleiotropic defects, such as extreme reduction of body size, developmental delay, hatched abdominal cuticle, and reduced female fertility. Morphological abnormalities characteristic of apoptosis are found in the ovaries, and a proportion of eggs laid by mfl mutant females degenerates during embryogenesis. We show that mfl encodes an ubiquitous nucleolar protein that plays a central role in ribosomal RNA processing and pseudouridylation, whose known eukaryotic homologues are yeast Cfb5p, rat NAP57 and human dyskerin, encoded by the gene responsible for the X-linked dyskeratosis congenita disease. mfl genetic analysis represents the first in vivo functional characterization of a member of this highly conserved gene family from higher eukaryotes. In addition, we report that mfl hosts an intron encoded box H/ACA snoRNA gene, the first member of this class of snoRNAs identified so far from Drosophila.  (+info)

Conversion of (+/-)-synephrine into p-hydroxyphenylacetaldehyde by Arthrobacter synephrinum. A novel enzymic reaction. (5/1396)

A partically purified enzyme from Arthrobacter synephrinum was found to catalyse the conversion of (+/-)-synphrine into p-hydroxyphrenylacetaldehyde and methylamine. The enzyme is highly specific for synephrine and is distinctly different from monoamine oxidase.  (+info)

Cloning and characterization of a mammalian pseudouridine synthase. (6/1396)

This report describes the cloning and characterization of a pseudouridine (psi) synthase from mouse that we have named mouse pseudouridine synthase 1 (mpus1p). The cDNA is approximately 1.5 kb and when used as a probe on a Northern blot of mouse RNA from tissues and cultured cells, several bands were detected. The open reading frame is 393 amino acids and has 35% identity over its length with yeast psi synthase 1 (pus1p). The recombinant protein was expressed in Escherichia coli and the purified protein converted specific uridines to psi in a number of tRNA substrates. The positions modified in stoichiometric amounts in vitro were 27/28 in the anticodon stem and also positions 34 and 36 in the anticodon of an intron containing tRNA. A human cDNA was also cloned and the smaller open reading frame (348 amino acids) was 92% identical over its length with mpus1p but is shorter by 45 amino acids at the amino terminus. The expressed recombinant human protein has no activity on any of the tRNA substrates, most probably the result of the truncated open reading frame.  (+info)

Genetic localization and molecular characterization of two key genes (mitAB) required for biosynthesis of the antitumor antibiotic mitomycin C. (7/1396)

Mitomycin C (MC) is an antitumor antibiotic derived biosynthetically from 3-amino-5-hydroxybenzoic acid (AHBA), D-glucosamine, and carbamoyl phosphate. A gene (mitA) involved in synthesis of AHBA has been identified and found to be linked to the MC resistance locus, mrd, in Streptomyces lavendulae. Nucleotide sequence analysis showed that mitA encodes a 388-amino-acid protein that has 71% identity (80% similarity) with the rifamycin AHBA synthase from Amycolatopsis mediterranei, as well as with two additional AHBA synthases from related ansamycin antibiotic-producing microorganisms. Gene disruption and site-directed mutagenesis of the S. lavendulae chromosomal copy of mitA completely blocked the production of MC. The function of mitA was confirmed by complementation of an S. lavendulae strain containing a K191A mutation in MitA with AHBA. A second gene (mitB) encoding a 272-amino-acid protein (related to a group of glycosyltransferases) was identified immediately downstream of mitA that upon disruption resulted in abrogation of MC synthesis. This work has localized a cluster of key genes that mediate assembly of the unique mitosane class of natural products.  (+info)

Rational design of a scytalone dehydratase-like enzyme using a structurally homologous protein scaffold. (8/1396)

The generation of enzymes to catalyze specific reactions is one of the more challenging problems facing protein engineers. Structural similarities between the enzyme scytalone dehydratase with nuclear transport factor 2 (NTF2) suggested the potential for NTF2 to be re-engineered into a scytalone dehydratase-like enzyme. We introduced four key catalytic residues into NTF2 to create a scytalone dehydratase-like active site. A C-terminal helix found in scytalone dehydratase but absent in NTF2 also was added. Mutant NTF2 proteins were tested for catalytic activity by using a spectroscopic assay. One of the engineered enzymes exhibited catalytic activity with minimal kcat and Km values of 0.125 min-1 and 800 microM, respectively. This level of catalytic activity represents minimally a 150-fold improvement in activity over the background rate for substrate dehydration and a dramatic step forward from the catalytically inert parent NTF2. This work represents one of the few examples of converting a protein scaffold into an enzyme, outside those arising from the induction of catalytic activity into antibodies.  (+info)