Hormonal interactions in the control of Arabidopsis hypocotyl elongation. (33/793)

The Arabidopsis hypocotyl, together with hormone mutants and chemical inhibitors, was used to study the role of auxin in cell elongation and its possible interactions with ethylene and gibberellin. When wild-type Arabidopsis seedlings were grown on media containing a range of auxin concentrations, hypocotyl growth was inhibited. However, when axr1-12 and 35S-iaaL (which have reduced auxin response and levels, respectively) were grown in the same conditions, auxin was able to promote hypocotyl growth. In contrast, auxin does not promote hypocotyl growth of axr3-1, which has phenotypes that suggest an enhanced auxin response. These results are consistent with the hypothesis that auxin levels in the wild-type hypocotyl are optimal for elongation and that additional auxin is inhibitory. When ethylene responses were reduced using either the ethylene-resistant mutant etr1 or aminoethoxyvinylglycine, an inhibitor of ethylene synthesis, auxin responses were unchanged, indicating that auxin does not inhibit hypocotyl elongation through ethylene. To test for interactions between auxin and gibberellin, auxin mutants were grown on media containing gibberellin and gibberellin mutants were grown on media containing auxin. The responses were found to be the same as wild-type Arabidopsis seedlings in all cases. In addition, 1 microM of the auxin transport inhibitor 1-naphthylphthalmic acid does not alter the response of wild-type seedlings to gibberellin. Double mutants were made between gibberellin and auxin mutants and the phenotypes of these appear additive. These results indicate that auxin and gibberellin are acting independently in hypocotyl elongation. Thus auxin, ethylene, and gibberellin each regulate hypocotyl elongation independently.  (+info)

Changes in gibberellin A(1) levels and response during de-etiolation of pea seedlings. (34/793)

The level of gibberellin A(1) (GA(1)) in shoots of pea (Pisum sativum) dropped rapidly during the first 24 h of de-etiolation. The level then increased between 1 and 5 d after transfer to white light. Comparison of the metabolism of [(13)C(3)H] GA(20) suggested that the initial drop in GA(1) after transfer is mediated by a light-induced increase in the 2beta-hydroxylation of GA(1) to GA(8). A comparison of the elongation response to GA(1) at early and late stages of de-etiolation provided strong evidence for a change in GA(1) response during de-etiolation, coinciding with the return of GA(1) levels to the normal, homeostatic levels found in light- and dark-grown plants. The emerging picture of the control of shoot elongation by light involves an initial inhibition of elongation by a light-induced decrease in GA(1) levels, with continued inhibition mediated by a light-induced change in the plant's response to the endogenous level of GA(1). Hence the plant uses a change in hormone level to respond to a change in the environment, but over time, homeostasis returns the level of the hormone to normal once the ongoing change in environment is accommodated by a change in the response of the plant to the hormone.  (+info)

Gibberellin-induced changes in growth anisotropy precede gibberellin-dependent changes in cortical microtubule orientation in developing epidermal cells of barley leaves. Kinematic and cytological studies on a gibberellin-responsive dwarf mutant, M489. (35/793)

We conducted kinematic and cytological studies on "between vein" epidermal cells of the gibberellin (GA)-deficient M489 dwarf mutant of barley (Hordeum vulgare L. Himalaya). GAs affect radial and axial components of cell expansion and cortical microtubule orientation. Adaxial cells in particular expand radially after leaving the elongation zone (EZ), probably as part of leaf unrolling. Exogenous gibberellic acid corrects the mutant's short, wide blades, short EZ, and slow elongation rate. Cell production rates increase more on the adaxial than on the abaxial surface. Cells spend equal periods of time elongating in dwarf and tall plants, but relative elemental growth rates start to decline sooner in the dwarf. GA increased the rate at which longitudinal wall area increased because the increased axial growth more than compensated for reduced radial growth. In dwarf leaves, increased radial expansion was detected in basal parts of the EZ before cortical microtubules lost transverse orientation in the distal elongation zone. We conclude that loss of microtubule orientation is not required for low GA levels to reduce growth anisotropy.  (+info)

Expression of an expansin is associated with endosperm weakening during tomato seed germination. (36/793)

Expansins are extracellular proteins that facilitate cell wall extension, possibly by disrupting hydrogen bonding between hemicellulosic wall components and cellulose microfibrils. In addition, some expansins are expressed in non-growing tissues such as ripening fruits, where they may contribute to cell wall disassembly associated with tissue softening. We have identified at least three expansin genes that are expressed in tomato (Lycopersicon esculentum Mill.) seeds during germination. Among these, LeEXP4 mRNA is specifically localized to the micropylar endosperm cap region, suggesting that the protein might contribute to tissue weakening that is required for radicle emergence. In gibberellin (GA)-deficient (gib-1) mutant seeds, which germinate only in the presence of exogenous GA, GA induces the expression of LeEXP4 within 12 hours of imbibition. When gib-1 seeds were imbibed in GA solution combined with 100 microM abscisic acid, the expression of LeEXP4 was not reduced, although radicle emergence was inhibited. In wild-type seeds, LeEXP4 mRNA accumulation was blocked by far-red light and decreased by low water potential but was not affected by abscisic acid. The presence of LeEXP4 mRNA during seed germination parallels endosperm cap weakening determined by puncture force analysis. We hypothesize that LeEXP4 is involved in the regulation of seed germination by contributing to cell wall disassembly associated with endosperm cap weakening.  (+info)

New members of a cold-responsive group-3 Lea/Rab-related Cor gene family from common wheat (Triticum aestivum L.). (37/793)

A Cor (cold-responsive) cDNA that belongs to the group-3 Lea (late embryogenesis abundant)/Rab (responsive to abscisic acid, ABA) family was isolated from a winter-hardy cultivar of common wheat (Triticum aestivum L.). Screening of a cold-acclimated cDNA library was performed using an ABA- and other stress-responsive barley cDNA clone, Hva1, as a probe. A wheat cDNA clone (designated as Wrab19) putatively encoded a basic (pI = 10.3) and hydrophobic protein with 179 amino acids. The deduced protein showed characteristics of the group-3 LEA/RAB protein family. In contrast to the single copy barley Hva1, Wrab19 belonged to a multigene family in the hexaploid wheat genome and six loci were assigned to the homoeologous group 1 chromosomes. Using Wrab19 as a probe, four homologous cDNAs (designated as Wrab17) were isolated that encoded acidic (pI = 4.6-4.7) and hydrophobic proteins, all with 166 amino acids. The deduced proteins showed high homology (a mean of 84% identity) with a barley gibberellic acid (GA3)-inducible protein, ES2A, and several other group-3 LEA/RAB proteins. Wrab17 was considered to be a three-copy gene and each copy was assigned to chromosome 5A, 4B or 4D of hexaploid wheat. Transcripts of both Wrab19 and Wrab17 accumulated within 1 day of cold acclimation at 4 degrees C. They were responsive to ABA and/or GA3, but showed some cultivar differences in their response to these plant hormones. We conclude that the two genes are new members of the group-3 Lea/Rab-related Cor gene family in wheat.  (+info)

A florigenic effect of sucrose in Fuchsia hybrida is blocked by gibberellin-induced assimilate competition. (38/793)

The use of gas chromatography-mass spectrometry-selected ion monitoring along with a (13)C internal standard has allowed sensitive measurements of the sucrose (Suc) content of individual shoot apices of Fuchsia hybrida. With intact plants, as the photosynthetic irradiance increased, so did shoot apex Suc content, reaching saturation at about 500 micromol m(-2) s(-1). These same plants flowered at the higher irradiances, remaining vegetative in 10-h short days at an irradiance of 230 micromol m(-2) s(-1). The strong correlation (r = 0.93) in these studies between flowering and shoot apex Suc content indicates a role for Suc as a stimulus to flowering in this species. However, Suc is not the long-day (LD) "florigen" of F. hybrida because 2 to 4 LD given as a 14-h low-irradiance photoperiod extension (10-15 micromol m(-2) s(-1)) induced flowering but without increase in shoot apex Suc content. Flowering induced by either pathway, the LD- or the Suc-mediated one, was inhibited by applying gibberellin (GA) to the shoot tip. Such inhibition of flowering by GA, at least for the LD pathway, was associated with a reduced apex Suc content, enhanced elongation of subapical stem tissue, and a reduced import into the shoot apex of leaf-sourced assimilate. Thus, our findings show how GA inhibits flowering of F. hybrida and confirm the importance of nutrient diversion in regulating flowering.  (+info)

Gibberellin biosynthesis mutations and root development in pea. (39/793)

Dwarf mutants of pea (Pisum sativum), with impaired gibberellin (GA) biosynthesis in the shoot, were studied to determine whether the roots of these genotypes had altered elongation and GA levels. Mutations na, lh-2, and ls-1 reduced GA levels in root tips and taproot elongation, although in lh-2 and ls-1 roots the reduction in elongation was small (less than 15%). The na mutation reduced taproot length by about 50%. The roots of na plants elongated in response to applied GA(1) and recombining na with mutation sln (which blocks GA catabolism) increased GA(1) levels in root tips and completely restored normal root development. In shoots, Mendel's le-1 mutation impairs the 3beta-hydroxylation of GA(20) to the bioactive GA(1), resulting in dwarfism. However, GA(1) and GA(20) levels were normal in le-1 roots, as was root development. The null mutation le-2 also did not reduce root GA levels or elongation. The results support the theory that GAs are important for normal root elongation in pea, and indicate that a 3beta-hydroxylase gene other than LE operates in pea roots.  (+info)

A role for brassinosteroids in germination in Arabidopsis. (40/793)

This paper presents evidence that plant brassinosteroid (BR) hormones play a role in promoting germination. It has long been recognized that seed dormancy and germination are regulated by the plant hormones abscisic acid (ABA) and gibberellin (GA). These two hormones act antagonistically with each other. ABA induces seed dormancy in maturing embryos and inhibits germination of seeds. GA breaks seed dormancy and promotes germination. Severe mutations in GA biosynthetic genes in Arabidopsis, such as ga1-3, result in a requirement for GA application to germinate. Whereas previous work has shown that BRs play a critical role in controlling cell elongation, cell division, and skotomorphogenesis, no germination phenotypes have been reported in BR mutants. We show that BR rescues the germination phenotype of severe GA biosynthetic mutants and of the GA-insensitive mutant sleepy1. This result shows that BR stimulates germination and raises the possibility that BR is needed for normal germination. If true, we would expect to detect a germination phenotype in BR mutants. We found that BR mutants exhibit a germination phenotype in the presence of ABA. Germination of both the BR biosynthetic mutant det2-1 and the BR-insensitive mutant bri1-1 is more strongly inhibited by ABA than is germination of wild type. Thus, the BR signal is needed to overcome inhibition of germination by ABA. Taken together, these results point to a role for BRs in stimulating germination.  (+info)