Gibberellic acid stabilises microtubules in maize suspension cells to cold and stimulates acetylation of alpha-tubulin. (1/793)

Gibberellic acid is known to stabilise microtubules in plant organs against depolymerisation. We have now devised a simplified cell system for studying this. Pretreatment of a maize cell suspension with gibberellic acid for just 3 h stabilised protoplast microtubules against depolymerisation on ice. In other eukaryotes, acetylation of alpha-tubulin is known to correlate with microtubule stabilisation but this is not established in plants. By isolating the polymeric tubulin fraction from maize cytoskeletons and immunoblotting with the antibody 6-11B-1, we have demonstrated that gibberellic acid stimulates the acetylation of alpha-tubulin. This is the first demonstrated link between microtubule stabilisation and tubulin acetylation in higher plants.  (+info)

Purification of gibberellic acid-induced lysosomes from wheat aleurone cells. (2/793)

Using isopycnic density gradient centrifugation, lysosomes were concentrated in a single region of a sucrose-Ficoll gradient (p = 1-10 g cm-3), well separated from most other cell organelles. Gibberellic acid-induced lysosomes were found to be rich in alpha-amylase and protease but not ribonuclease. The lysosomal band also contained a majority of the NADH2-cytochrome c reductase, a marker enzyme for endoplasmic reticulum, found in the gradient. Examination of electron micrographs revealed that a purified band of lyosomes contained at least 3 vesicle types, ranging in size from 0-1 to 0-5 mum. The significance of these findings to proposed mechanisms of action of gibberellic acid is discussed.  (+info)

Extragenic suppressors of the Arabidopsis gai mutation alter the dose-response relationship of diverse gibberellin responses. (3/793)

Active gibberellins (GAs) are endogenous factors that regulate plant growth and development in a dose-dependent fashion. Mutant plants that are GA deficient, or exhibit reduced GA responses, display a characteristic dwarf phenotype. Extragenic suppressor analysis has resulted in the isolation of Arabidopsis mutations, which partially suppress the dwarf phenotype conferred by GA deficiency and reduced GA-response mutations. Here we describe detailed studies of the effects of two of these suppressors, spy-7 and gar2-1, on several different GA-responsive growth processes (seed germination, vegetative growth, stem elongation, chlorophyll accumulation, and flowering) and on the in planta amounts of active and inactive GA species. The results of these experiments show that spy-7 and gar2-1 affect the GA dose-response relationship for a wide range of GA responses and suggest that all GA-regulated processes are controlled through a negatively acting GA-signaling pathway.  (+info)

Long-day up-regulation of a GAMYB gene during Lolium temulentum inflorescence formation. (4/793)

Long-day exposure of the grass Lolium temulentum may regulate flowering via changes in gibberellin (GA) levels. Therefore, we have examined both GA levels and expression of a MYB transcription factor that is specific to the GA signal transduction pathway in monocots. This MYB gene from L. temulentum shows over 90% nucleotide identity with the barley and rice GAMYB genes, and, like them, gibberellic acid (GA3) up-regulates its expression in the seed. Furthermore, cDNAs of both the barley and L. temulentum GAMYB show the same simple patterns of hybridization with digests of L. temulentum genomic DNA. Compared with vegetative shoot apices of L. temulentum, the in situ mRNA expression of LtGAMYB does not change during the earliest steps of "floral" initiation at the apex. However, by 100 h (the double-ridge stage of flowering) its expression increased substantially and was highest in the terminal and lateral spikelet sites. Thereafter, expression declined overall but then increased within stamen primordia. Prior to increased LtGAMYB expression, long-day exposure sufficient to induce flowering led to increased (5- to 20-fold) levels of GA1 and GA4 in the leaf. Thus, increases first in GA level in the leaf followed by increased expression of LtGAMYB in the apex suggest important signaling and/or response roles in flowering.  (+info)

Cloning and characterization of a gibberellin-induced RNase expressed in barley aleurone cells. (5/793)

We cloned a cDNA for a gibberellin-induced ribonuclease (RNase) expressed in barley (Hordeum vulgare) aleurone and the gene for a second barley RNase expressed in leaf tissue. The protein encoded by the cDNA is unique among RNases described to date in that it contains a novel 23-amino acid insert between the C2 and C3 conserved sequences. Expression of the recombinant protein in tobacco (Nicotiana tabacum) suspension-cultured protoplasts gave an active RNase of the expected size, confirming the enzymatic activity of the protein. Analyses of hormone regulation of expression of mRNA for the aleurone RNase revealed that, like the pattern for alpha-amylase, mRNA levels increased in the presence of gibberellic acid, and its antagonist abscisic acid prevented this effect. Quantitative studies at early times demonstrated that cycloheximide treatment of aleurone layers increased mRNA levels 4-fold, whereas a combination of gibberellin plus cycloheximide treatment was required to increase alpha-amylase mRNA levels to the same extent. These results are consistent with loss of repression as an initial effect of gibberellic acid on transcription of those genes, although the regulatory pathways for the two genes may differ.  (+info)

Molecular cloning and functional expression of gibberellin 2- oxidases, multifunctional enzymes involved in gibberellin deactivation. (6/793)

A major catabolic pathway for the gibberellins (GAs) is initiated by 2beta-hydroxylation, a reaction catalyzed by 2-oxoglutarate-dependent dioxygenases. To isolate a GA 2beta-hydroxylase cDNA clone we used functional screening of a cDNA library from developing cotyledons of runner bean (Phaseolus coccineus L.) with a highly sensitive tritium-release assay for enzyme activity. The encoded protein, obtained by heterologous expression in Escherichia coli, converted GA9 to GA51 (2beta-hydroxyGA9) and GA51-catabolite, the latter produced from GA51 by further oxidation at C-2. The enzyme thus is multifunctional and is best described as a GA 2-oxidase. The recombinant enzyme also 2beta-hydroxylated other C19-GAs, although only GA9 and GA4 were converted to the corresponding catabolites. Three related cDNAs, corresponding to gene sequences present in Arabidopsis thaliana databases, also encoded functional GA 2-oxidases. Transcripts for two of the Arabidopsis genes were abundant in upper stems, flowers, and siliques, but the third transcript was not detected by Northern analysis. Transcript abundance for the two most highly expressed genes was lower in apices of the GA-deficient ga1-2 mutant of Arabidopsis than in wild-type plants and increased after treatment of the mutant with GA3. This up-regulation of GA 2-oxidase gene expression by GA contrasts GA-induced down-regulation of genes encoding the biosynthetic enzymes GA 20-oxidase and GA 3beta-hydroxylase. These mechanisms would serve to maintain the concentrations of biologically active GAs in plant tissues.  (+info)

Feedback regulation of GA5 expression and metabolic engineering of gibberellin levels in Arabidopsis. (7/793)

The gibberellin (GA) 20-oxidase encoded by the GA5 gene of Arabidopsis directs GA biosynthesis to active GAs, whereas that encoded by the P16 gene of pumpkin endosperm leads to biosynthesis of inactive GAs. Negative feedback regulation of GA5 expression was demonstrated in stems of Arabidopsis by bioactive GAs but not by inactive GA. In transgenic Arabidopsis plants overexpressing P16, there was a severe reduction in the amounts of C20-GA intermediates, accumulation of large amounts of inactive GA25 and GA17, a reduction in GA4 content, and a small increase in GA1. However, due to feedback regulation, expression of GA5 and GA4, the gene coding for the subsequent 3beta-hydroxylase, was greatly increased to compensate for the effects of the P16 transgene. Consequently, stem height was only slightly reduced in the transgenic plants.  (+info)

Deletions in the gibberellin biosynthesis gene cluster of Gibberella fujikuroi by restriction enzyme-mediated integration and conventional transformation-mediated mutagenesis. (8/793)

We induced mutants of Gibberella fujikuroi deficient in gibberellin (GA) biosynthesis by transformation-mediated mutagenesis with the vector pAN7-1. We recovered 24 GA-defective mutants in one of nine transformation experiments performed without the addition of a restriction enzyme. Each mutant had a similar Southern blot pattern, suggesting the integration of the vector into the same site. The addition of a restriction enzyme by restriction enzyme-mediated integration (REMI) significantly increased the transformation rate and the rate of single-copy integration events. Of 1,600 REMI transformants, two produced no GAs. Both mutants had multiple copies of the vector pAN7-1 and one had a Southern blot pattern similar to those of the 24 conventionally transformed GA-deficient mutants. Biochemical analysis of the two REMI mutants confirmed that they cannot produce ent-kaurene, the first specific intermediate of the GA pathway. Feeding the radioactively labelled precursors ent-kaurene and GA12-aldehyde followed by high-performance liquid chromatography and gas chromatography-mass spectrometry analysis showed that neither of these intermediates was converted to GAs in the mutants. Southern blot analysis and pulsed-field gel electrophoresis of the transformants using the bifunctional ent-copalyl diphosphate/ent-kaurene synthase gene (cps/ks) and the flanking regions as probes revealed a large deletion in the GA-deficient REMI transformants and in the GA-deficient transformants obtained by conventional insertional transformation. We conclude that transformation procedures with and without the addition of restriction enzymes can lead to insertion-mediated mutations and to deletions and chromosome translocations.  (+info)