Complete genomes in WWW Entrez: data representation and analysis. (1/588)

MOTIVATION: The large amount of genome sequence data now publicly available can be accessed through the National Center for Biotechnology Information (NCBI) Entrez search and retrieval system, making it possible to explore data of a breadth and scope exceeding traditional flatfile views. RESULTS: Here we report recent improvements for completely sequenced genomes from viruses, bacteria, and yeast. Flexible web based views, precomputed relationships, and immediate access to analytical tools provide scientists with a portal into the new insights to be gained from completed genome sequences. AVAILABILITY: Entrez Genomes can be accessed on the World Wide Web at http://www.ncbi.nlm.nih.gov/Entrez/Genome/ org.html.  (+info)

Whole genome-based phylogenetic analysis of free-living microorganisms. (2/588)

A phylogenetic 'tree of life' has been constructed based on the observed presence and absence of families of protein-encoding genes observed in 11 complete genomes of free-living microorganisms. Past attempts to reconstruct the evolutionary relation-ships of microorganisms have been limited to sets of genes rather than complete genomes. Despite apparent rampant lateral gene transfer among microorganisms, these results indicate a single robust underlying evolutionary history for these organisms. Broadly, the tree produced is very similar to the small subunit rRNA tree although several additional phylogenetic relationships appear to be resolved, including the relationship of Archaeoglobus to the methanogens studied. This result is in contrast to notions that a robust phylogenetic reconstruction of microorganisms is impossible due to their genomes being composed of an incomprehensible amalgam of genes with complicated histories and suggests that this style of genome-wide phylogenetic analysis could become an important method for studying the ancient diversification of life on Earth. Analyses using informational and operational subsets of the genes showed that this 'tree of life' is not dependent on the phylogenetically more consistent informational genes.  (+info)

Novel coding regions in four complete archaeal genomes. (3/588)

In the process of analysing the four available complete archaeal genomes, we have noted that certain regions characterised as 'non-coding' exhibit significant sequence similarity to other protein sequences from Archaea and other species. Using established technology, we have identified a number of potential protein coding regions in these putative 'non-coding' regions. We have detected 524 such cases, of which 113 regions appear to code for proteins present in archaeal or other species, while the remaining 411 regions are mostly start/stop definition conflicts. Of the 113 protein coding regions, only 21 code for proteins with homologues of known function. The number of novel coding sequences identified herein amounts to 1. 5% of the total genome entries, while the conflicting cases represent an additional 5%. The observed differences between the four complete archaeal genomes seem to reflect disparate approaches to genome annotation. Genome sequence collections should be regularly checked to improve gene prediction by sequence similarity and greater effort is required to make gene definitions consistent across related species.  (+info)

The COG database: a tool for genome-scale analysis of protein functions and evolution. (4/588)

Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes (http://www. ncbi.nlm. nih.gov/COG). The COGs were constructed by applying the criterion of consistency of genome-specific best hits to the results of an exhaustive comparison of all protein sequences from these genomes. The database comprises 2091 COGs that include 56-83% of the gene products from each of the complete bacterial and archaeal genomes and approximately 35% of those from the yeast Saccharomyces cerevisiae genome. The COG database is accompanied by the COGNITOR program that is used to fit new proteins into the COGs and can be applied to functional and phylogenetic annotation of newly sequenced genomes.  (+info)

EMGLib: the enhanced microbial genomes library (update 2000). (5/588)

As the number of complete microbial genomes publicly available is still growing, the problem of annotation quality in these very large sequences remains unsolved. Indeed, the number of annotations associated with complete genomes is usually lower than those of the shorter entries encountered in the repository collections. Moreover, classical sequence database management systems have difficulties in handling entries of such size. In this context, the Enhanced Microbial Genomes Library (EMGLib) was developed to try to alleviate these problems. This library contains all the complete genomes from prokaryotes (bacteria and archaea) already sequenced and the yeast genome in GenBank format. The annotations are improved by the introduction of data on codon usage, gene orientation on the chromosome and gene families. It is possible to access EMGLib through two database systems set up on WWW servers: the PBIL server at http://pbil.univ-lyon1.fr/emglib.html and the MICADO server at http://locus.jouy.inra.fr/micado  (+info)

A phylogenomic study of DNA repair genes, proteins, and processes. (6/588)

The ability to recognize and repair abnormal DNA structures is common to all forms of life. Studies in a variety of species have identified an incredible diversity of DNA repair pathways. Documenting and characterizing the similarities and differences in repair between species has important value for understanding the origin and evolution of repair pathways as well as for improving our understanding of phenotypes affected by repair (e.g., mutation rates, lifespan, tumorigenesis, survival in extreme environments). Unfortunately, while repair processes have been studied in quite a few species, the ecological and evolutionary diversity of such studies has been limited. Complete genome sequences can provide potential sources of new information about repair in different species. In this paper, we present a global comparative analysis of DNA repair proteins and processes based upon the analysis of available complete genome sequences. We use a new form of analysis that combines genome sequence information and phylogenetic studies into a composite analysis we refer to as phylogenomics. We use this phylogenomic analysis to study the evolution of repair proteins and processes and to predict the repair phenotypes of those species for which we now know the complete genome sequence.  (+info)

Lessons from the Aeropyrum pernix genome. (7/588)

Aeropyrum pernix is the first crenarchaeote and first aerobic member of the Archaea for which the complete genome sequence has been determined. The sequence confirms the distinct nature of crenarchaeotes and provides new insight into the relationships between the three domains: Bacteria, Archaea and Eukaryotes.  (+info)

Prediction of transcription regulatory sites in Archaea by a comparative genomic approach. (8/588)

Intragenomic and intergenomic comparisons of upstream nucleotide sequences of archaeal genes were performed with the goal of predicting transcription regulatory sites (operators) and identifying likely regulons. Learning sets for the detection of regulatory sites were constructed using the available experimental data on archaeal transcription regulation or by analogy with known bacterial regulons, and further analysis was performed using iterative profile searches. The information content of the candidate signals detected by this method is insufficient for reliable predictions to be made. Therefore, this approach has to be complemented by examination of evolutionary conservation in different archaeal genomes. This combined strategy resulted in the prediction of a conserved heat shock regulon in all euryarchaea, a nitrogen fixation regulon in the methanogens Methanococcus jannaschii and Methanobacterium thermoautotrophicum and an aromatic amino acid regulon in M.thermoautotrophicum. Unexpectedly, the heat shock regulatory site was detected not only for genes that encode known chaperone proteins but also for archaeal histone genes. This suggests a possible function for archaeal histones in stress-related changes in DNA condensation. In addition, comparative analysis of the genomes of three Pyrococcus species resulted in the prediction of their purine metabolism and transport regulon. The results demonstrate the feasibility of prediction of at least some transcription regulatory sites by comparing poorly characterized prokaryotic genomes, particularly when several closely related genome sequences are available.  (+info)