Effect of mutations in the second extracellular loop of CXCR4 on its utilization by human and feline immunodeficiency viruses. (25/12744)

CCR5 and CXCR4 are the principal CD4-associated coreceptors used by human immunodeficiency virus type 1 (HIV-1). CXCR4 is also a receptor for the feline immunodeficiency virus (FIV). The rat CXCR4 cannot mediate infection by HIV-1NDK or by FIVPET (both cell line-adapted strains) because of sequence differences with human CXCR4 in the second extracellular loop (ECL2). Here we made similar observations for HIV-189.6 (a strain also using CCR5) and for a primary HIV-1 isolate. It showed the role of ECL2 in the coreceptor activity of CXCR4 for different types of HIV-1 strains. By exchanging ECL2 residues between human and rat CXCR4, we found that several amino acid differences contributed to the inactivity of the rat CXCR4 toward HIV-189.6. In contrast, its inactivity toward HIV-1NDK seemed principally due to a serine at position 193 instead of to an aspartic acid (Asp193) in human CXCR4. Likewise, a mutation of Asp187 prevented usage of CXCR4 by FIVPET. Different mutations of Asp193, including its replacement by a glutamic acid, markedly reduced or suppressed the activity of CXCR4 for HIV-1NDK infection, indicating that the negative charge was not the only requirement. Mutations of Asp193 and of arginine residues (Arg183 and Arg188) of CXCR4 reduced the efficiency of HIV-1 infection for all HIV-1 strains tested. Other ECL2 mutations tested had strain-specific effects or no apparent effect on HIV-1 infection. The ECL2 mutants allowed us to identify residues contributing to the epitope of the 12G5 monoclonal antibody. Overall, residues with different charges and interspersed in ECL2 seem to participate in the coreceptor activity of CXCR4. This suggests that a conformational rather than linear epitope of ECL2 contributes to the HIV-1 binding site. However, certain HIV-1 and FIV strains seem to require the presence of a particular ECL2 residue.  (+info)

Differential cell tropism of feline immunodeficiency virus molecular clones in vivo. (26/12744)

Independent studies have demonstrated different cell tropisms for molecular clones of feline immunodeficiency virus (FIV). In this report, we examined three clones, FIV-pF34, FIV-14, and FIV-pPPR, for replication in Crandell feline kidney (CrFK) cells, feline peripheral blood mononuclear cells (PBMC), and feline macrophage cultures. Importantly, cell tropism for these three clones was also examined in vivo. FIV-pF34 replication was efficient in CrFK cells but severely restricted in PBMC, whereas replication of FIV-pPPR was vigorous in PBMC but severely restricted in CrFK cells. FIV-14 replication was productive in both CrFK cells and PBMC. Interestingly, all three molecular clones replicated with similar efficiencies in primary feline monocyte-derived macrophages. In vivo, FIV-pF34 proved least efficient for establishing persistent infection, and proviral DNA when detectable, was localized predominately to nonlymphoid cell populations (macrophages). FIV-pPPR proved most efficient for induction of a persistent viremia in vivo, and proviral DNA was localized predominately in CD4(+) and CD8(+) lymphocyte subsets. FIV-14 inoculation of cats resulted in an infection characterized by seroconversion and localization of proviral DNA in CD4(+) lymphocytes only. Results of this study on diverse FIV molecular clones revealed that in vitro replication efficiency of an FIV isolate in PBMC directly correlated with replication efficiency in vivo, whereas proficiency for replication in macrophages in vitro was not predictive for replication potential in vivo. Also, infection of both CD4(+) and CD8(+) lymphocyte subsets was associated with higher virus load in vivo. Results of the studies on these three FIV clones, which exhibited differential cell tropism, indicated a correlation between in vitro and in vivo cell tropism and virus replication.  (+info)

Dissecting the role of the N-terminal domain of human immunodeficiency virus integrase by trans-complementation analysis. (27/12744)

The human immunodeficiency virus (HIV) integrase protein (IN) catalyzes two reactions required to integrate HIV DNA into the human genome: 3' processing of the viral DNA ends and integration. IN has three domains, the N-terminal zinc-binding domain, the catalytic core, and the C-terminal SH3 domain. Previously, it was shown that IN proteins mutated in different domains could complement each other. We now report that this does not require any overlap between the two complementing proteins; an N-terminal domain, provided in trans, can restore IN activity of a mutant lacking this domain. Only the zinc-coordinating form of the N-terminal domain can efficiently restore IN activity of an N-terminal deletion mutant. This suggests that interaction between different domains of IN is needed for functional multimerization. We find that the N-terminal domain of feline immunodeficiency virus IN can support IN activity of an N-terminal deletion mutant of HIV type 2 IN. These cross-complementation experiments indicate that the N-terminal domain contributes to the recognition of specific viral DNA ends.  (+info)

Irreversible inhibition of human immunodeficiency virus type 1 integrase by dicaffeoylquinic acids. (28/12744)

Human immunodeficiency virus type 1 (HIV-1) and other retroviruses require integration of a double-stranded DNA copy of the RNA genome into the host cell chromosome for productive infection. The viral enzyme, integrase, catalyzes the integration of retroviral DNA and represents an attractive target for developing antiretroviral agents. We identified several derivatives of dicaffeoylquinic acids (DCQAs) that inhibit HIV-1 replication in tissue culture and catalytic activities of HIV-1 integrase in vitro. The specific step at which DCQAs inhibit the integration in vitro and the mechanism of inhibition were examined in the present study. Titration experiments with different concentrations of HIV-1 integrase or DNA substrate found that the effect of DCQAs was exerted on the enzyme and not the DNA. In addition to HIV-1, DCQAs also inhibited the in vitro activities of MLV integrase and truncated variants of feline immunodeficiency virus integrase, suggesting that these compounds interacted with the central core domain of integrase. The inhibition on retroviral integrases was relatively specific, and DCQAs had no effect on several other DNA-modifying enzymes and phosphoryltransferases. Kinetic analysis and dialysis experiments showed that the inhibition of integrase by DCQAs was irreversible. The inhibition did not require the presence of a divalent cation and was unaffected by preassembling integrase onto viral DNA. The results suggest that the irreversible inhibition by DCQAs on integrase is directed toward conserved amino acid residues in the central core domain during catalysis.  (+info)

Detection of Bartonella henselae DNA by two different PCR assays and determination of the genotypes of strains involved in histologically defined cat scratch disease. (29/12744)

Cat scratch disease (CSD) is a common cause of subacute regional lymphadenopathy, not only in children but also in adults. Serological and molecular studies demonstrated that Bartonella henselae is the etiologic agent in most cases of CSD. Amplification of B. henselae DNA in affected tissue and detection of antibodies to B. henselae are the two mainstays in the laboratory diagnosis of CSD. We designed a retrospective study and investigated formalin-fixed, paraffin-embedded lymph nodes from 60 patients (25 female, 35 male) with histologically suspected CSD by PCR amplification. The sensitivities of two different PCR assays were compared. The first primer pair amplified a 296-bp fragment of the 16S rRNA gene in 36 of the 60 samples, corresponding to a sensitivity of 60%. The second primer pair amplified a 414-bp fragment of the htrA gene in 26 of the 60 lymph nodes, corresponding to a sensitivity of 43.3%. Bartonella DNA could be detected in a total of 39 (65%) of the 60 lymph nodes investigated. However, histopathologic findings are typical but not specific for CSD and cannot be considered as a "gold standard" for diagnosis of CSD. The sensitivity of the PCR assays increased from 65 to 87% if two criteria (histology and serology) were used in combination for diagnosis of CSD. Two genotypes (I and II) of B. henselae are described as being involved in CSD. Genotype I was found in 23 (59%) and genotype II was found in 9 (23%) of the 39 PCR-positive lymph nodes. Seven (18%) lymph nodes were negative in both type-specific PCR assays. Thirty (50%) of our 60 patients were younger than 20 years old (15 were younger than 10 years), 20 (33%) were between 21 and 40 years old, and 10 (17%) patients were between 41 and 84 years old. Our data suggest that detection of Bartonella DNA in patients' samples might confirm the histologically suspected diagnosis of CSD.  (+info)

Bartonella koehlerae sp. nov., isolated from cats. (30/12744)

Two of the 25 Bartonella isolates recovered during a prevalence study of Bartonella henselae bacteremia in domestic cats from the greater San Francisco Bay region were found to differ phenotypically and genotypically from all prior B. henselae isolates. These isolates, C-29 and C-30, which were recovered from the blood of two pet cats belonging to the same household, grew on chocolate agar as pinpoint colonies following 14 days of incubation at 35 degrees C in a candle jar but failed to grow on heart infusion agar supplemented with 5% rabbit blood. Additional phenotypic characteristics distinguished the isolates C-29 and C-30 from other feline B. henselae isolates. The restriction patterns obtained for C-29 and C-30 by citrate synthase PCR-restriction fragment length polymorphism (RFLP) analysis as well as by genomic RFLP could not be distinguished from each other but were distinctly different from that of the B. henselae type strain. In reciprocal reactions, DNAs from strains C-29 and C-30 were 97 to 100% related under optimal and stringent DNA reassociation conditions, with 0 to 0.5% divergence within related sequences. Labeled DNA from the type strain of B. henselae was 61 to 65% related to unlabeled DNAs from strains C-29 and C-30 in 55 degrees C reactions, with 5.0 to 5.5% divergence within the related sequences, and 31 to 41% related in stringent, 70 degrees C reactions. In reciprocal reactions, labeled DNAs from strains C-29 and C-30 were 68 to 92% related to those of the B. henselae type strain and other B. henselae strains, with 5 to 7% divergence. The 16S rRNA gene sequence of strain C-29 was 99.54% homologous to that of the type strain of B. henselae. On the basis of these findings, the two isolates C-29 and C-30 are designated a new species of Bartonella, for which we propose the name Bartonella koehlerae. The type strain of Bartonella koehlerae is strain C-29 (ATCC 700693).  (+info)

Trigeminal nerve ganglion stimulation-induced neurovascular reflexes in the anaesthetized cat: role of endothelin(B) receptors in carotid vasodilatation. (31/12744)

1. The effects of intravenous administration of endothelin (ET) receptor antagonists SB-209670 (0.001-10.0 mg kg(-1)), SB-217242, SB-234551 (0.01-10.0 mg kg(-1)) and BQ-788 (0.001-1.0 mg kg(-1)) were investigated on trigeminal nerve ganglion stimulation-induced neurovascular reflexes in the carotid vasculature of the anaesthetized cat. Comparisons were made with sumatriptan (0.003-3.0 mg kg(-1)) and alpha-CGRP8-37 (0.001-0.1 mg kg(-1)). 2. Trigeminal nerve ganglion stimulation produced frequency related increases in carotid blood flow, reductions in carotid vascular resistance and non-frequency related increases in blood pressure. Guanethidine (3 mg kg(-1), i.v.) blocked trigeminal nerve ganglion-induced increases in blood pressure but had no effect on changes in carotid flow or resistance. Maximal reductions in carotid vascular resistance was observed at 10 Hz, and this frequency was selected to investigate the effects of drugs on trigeminal nerve ganglion stimulation-induced responses in guanethidine treated cats. 3. Saline, alpha-CGRP8-37 SB-209670 and BQ-788 had little or no effect on resting haemodynamic parameters. SB-217242 (10 mg kg(-1), n=3) produced a 56% reduction in arterial blood pressure whereas SB-233451 (10 mg kg(-1), n=3) produced a 30% reduction in carotid vascular resistance. Sumatriptan produced dose-related reductions in resting carotid flow and increases (max. 104% at 0.3 mg kg(-1), n = 5) in vascular resistance. 4. SB-209670 (n=6-7), SB-217242 (n=3) and BQ-788 (n=3) produced inhibition of trigeminal nerve ganglion stimulation-induced reductions in carotid vascular resistance. Saline, SB-234551, alpha-CGRP8-37 and sumatriptan had no effect. 5. These data demonstrate ET(B) receptor blockade attenuates the vasodilator effects of trigeminal nerve ganglion stimulation in the carotid vascular bed of guanethidine pretreated anaesthetized cats.  (+info)

Stimulated changes in localized cerebral energy consumption under anesthesia. (32/12744)

Focal changes in the cerebral metabolic rate of glucose utilization (CMRglc) are small (10-40%) during sensory activation in awake humans, as well as in awake rodents and primates (20-50%). They are significantly larger (50-250%) in sensory activation studies of anesthetized rats and cats. Our data, in agreement with literature values, show that in the resting anesthetized state values of CMRglc are lower than in the resting nonanesthetized state whereas the final state values, reached upon activation, are similar for the anesthetized and nonanesthetized animals. The lower resting anesthetized state values of CMRglc explain why the increments upon activation from anesthesia are larger than when starting from the nonanesthetized conditions. Recent 13C NMR measurements in our laboratory have established a quantitative relationship between the energetics of glucose oxidation, CMRglc (oxidative), and the flux of the glutamate/gamma-aminobutyric acid/glutamine neurotransmitter cycle, Vcycle. In both the resting awake value of CMRglc(oxidative), and its increment upon stimulation, a large majority (approximately 80%) of the brain energy consumption is devoted to Vcycle. In the differencing methods of functional imaging, it is assumed that the incremental change in the measured signal represents the modular activity that supports the functional response. However, the same amount of activity must be present during the response to stimulation, irrespective of the initial basal state of the cortex. Thus, whereas the incremental signals of DeltaCMRglc can localize neurotransmitter activity, the magnitude of such activity during the response is represented by the total localized CMRglc, not the increment.  (+info)