Adrenoceptor agonists inhibit calcium-dependent potentials in rat stellate ganglion neurons. (1/218)

AIM: To study the effects of adrenoceptor agonists on the stellate ganglion neurons. METHODS: Intracellular recordings were made from neurons of the isolated rat stellate ganglia. RESULTS: Noradrenaline and clonidine (10-30 mumol.L-1) reversibly depressed 3 types of calcium-dependent potentials, namely, the action potential shoulder; the spike after-hyperpolarization; the Ca2+ spike evoked in Krebs' solution containing TTX and TEA and fast excitatory postsynaptic potential (f-EPSP). CONCLUSION: The adrenoceptor agonists inhibitied the 3 calcium-dependent potentials; f-EPSP was inhibited by reducing Ca2+ influx at presynaptic site in population of neurons.  (+info)

NT-3, like NGF, is required for survival of sympathetic neurons, but not their precursors. (2/218)

Superior cervical ganglia of postnatal mice with a targeted disruption of the gene for neurotrophin-3 have 50% fewer neurons than those of wild-type mice. In culture, neurotrophin-3 increases the survival of proliferating sympathetic precursors. Both precursor death (W. ElShamy et al., 1996, Development 122, 491-500) and, more recently, neuronal death (S. Wyatt et al., 1997, EMBO J. 16, 3115-3123) have been described in mice lacking NT-3. Consistent with the second report, we found that, in vivo, neurogenesis and precursor survival were unaffected by the absence of neurotrophin-3 but neuronal survival was compromised so that only 50% of the normal number of neurons survived to birth. At the time of neuron loss, neurotrophin-3 expression, assayed with a lacZ reporter, was detected in sympathetic target tissues and blood vessels, including those along which sympathetic axons grow, suggesting it may act as a retrograde neurotrophic factor, similar to nerve growth factor. To explore this possibility, we compared neuron loss in neurotrophin-3-deficient mice with that in nerve growth factor-deficient mice and found that neuronal losses occurred at approximately the same time in both mutants, but were less severe in mice lacking neurotrophin-3. Eliminating one or both neurotrophin-3 alleles in mice that lack nerve growth factor does not further reduce sympathetic neuron number in the superior cervical ganglion at E17.5 but does alter axon outgrowth and decrease salivary gland innervation. Taken together these results suggest that neurotrophin-3 is required for survival of some sympathetic neurons that also require nerve growth factor.  (+info)

Contribution of nitric oxide to the presynaptic inhibition by endothelin ETB receptor of the canine stellate ganglionic transmission. (3/218)

We previously reported that endothelin (ET) 3 inhibited presynaptically the dog stellate ganglionic transmission. Here, we report the investigation of the possible involvement of nitric oxide pathway in the endothelin-induced inhibition of the ganglionic transmission. The amount of acetylcholine released by preganglionic stimulation for 10 min was concentration-dependently inhibited after exposure to ET-3 (10(-9)-10(-6) M) or IRL-1620, endothelin ET(B) receptor agonist (10(-8)-10(-5) M). The inhibition was antagonized by pretreatment with a nonselective endothelin receptors antagonist (bosentan) and an ET(B) receptor antagonist (BQ-788) or a neuronal nitric oxide synthase inhibitor, 3-bromo-7-nitroindazole, but was not inhibited by a selective ET(A) receptor antagonist, BQ-123. The reduction induced by ET-3 was also antagonized by treatment with a selective inhibitor of soluble guanylyl cyclase, 1H-[1,2, 4]oxadiazolo[4,3-a]quinoxalin-1-one. In addition, similar reductions were also mimicked by exposure to cGMP analog, 8-bromoguanosine-3, 5-cyclic monophosphate and nitric oxide donor, S-nitroso-N-acetylpenicillamine. Exposure to ET-3 or IRL-1620 for a 30-min period increased the levels of total nitric oxide (NO), nitrite plus nitrate NO(x) concentration in the incubation medium, with the increase in NO(x) also being antagonized by BQ-788 at the same concentration. The ET-3-induced increase in NO(x) was antagonized by treatment with the same concentration of 3-bromo-7-nitroindazole or a selective inhibitor of receptor-mediated Ca(2+) entry, 1-[b-[3-(4-methoxyphenyl) propoxy]-4-methoxyphenethyl]-1H-imidazole (10(-5) M), and with a calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide. These results indicate that ET(B) receptor activation inhibits the sympathetic ganglionic transmission via reducing acetylcholine release from presynaptic nerve terminals, although this inhibition also seems to involve the ET(B) receptor-operated Ca(2+)-calmodulin-dependent activation of endogenous nitric oxide production.  (+info)

Effects of unilateral stellate ganglion block on the spectral characteristics of heart rate variability. (4/218)

The effect of unilateral stellate ganglion block on cardiovascular regulation remains controversial, so the present study used power spectral analysis of heart rate variability to investigate its effect on the autonomic neural control of the heart. In 20 young healthy volunteers (mean age: 25 years), heart rate variability was determined before and after unilateral stellate ganglion block (right side 11, left side 9) using 8 ml of 1% mepivacaine during supine rest. Using autoregressive spectrum analysis, power spectra were quantified by measuring the area in 3 frequency bands: high-frequency power (lnHF, parasympathetic influence) from 0.15 to 0.40 Hz, low-frequency power (lnLF, predominantly sympathetic influence) from 0.04 to 0.15 Hz, and total-frequency power (lnTF) less than 0.40 Hz. Right stellate ganglion block decreased not only the lnLF component from 6.55+/-0.84 to 5.77+/-0.47 but also the lnHF component from 4.40+/-0.95 to 3.42+/-1.12 (p<0.05). In contrast, left stellate ganglion block changed neither the lnLF nor the lnHF component. The lnTF component was also decreased significantly by right stellate ganglion block from 7.80+/-0.95 to 7.01+/-0.36 (p<0.05), but was unchanged following left stellate ganglion block. Neither right nor left stellate ganglion block induced any significant change in both the RR and corrected QT intervals. However, changes in the RR interval induced by right stellate ganglion block showed significant positive correlation with changes in lnHF (p<0.005) and lnTF (p<0.05). These results suggest that (1) autonomic innervation to the sinus node is mainly through the right-sided stellate ganglion, (2) pharmacological right-sided stellate ganglion block may attenuate not only sympathetic but also parasympathetic activity and (3) following right stellate ganglion block the decrease in both the sympathetic and parasympathetic influence on the sinus node may inconsistently counterbalance and change the RR interval.  (+info)

Immunocytochemical localization studies of myelin basic protein. (5/218)

The location of myelin encephalitogenic or basic protein (BP) in peripheral nervous system (PNS) and central nervous system (CNS) was investigated by immunofluorescence and horseradish peroxidase (HRP) immunocytochemistry. BP or cross-reacting material could be clearly localized to myelin by immunofluorescence and light microscope HRP immunocytochemistry. Fine structural studies proved to be much more difficult, especially in the CNS, due to problems in tissue fixation and penetration of reagents. Sequential fixation in aldehyde followed by ethanol or methanol provided the best conditions for ultrastructural indirect immunocytochemical studies. In PNS tissue, anti-BP was localized exclusively to the intraperiod line of myelin. Because of limitations in technique, the localization of BP in CNS myelin could not be unequivocally determined. In both PNS and CNS tissue, no anti-BP binding to nonmyelin cellular or membranous elements was detected.  (+info)

Stellate ganglion block modifies the distribution of lymphocyte subsets and natural-killer cell activity. (6/218)

BACKGROUND: Recent investigations suggest that the sympathetic nervous system affects the immune system. This study examined whether stellate ganglion block (SGB) affects the immune response, specifically the distribution of lymphocyte subsets and natural-killer (NK) cell activity. METHODS: Ten volunteers received three different treatments in random order at 7-day intervals: (1) SGB with 7 ml of 1% lidocaine; (2) an identical volume of normal saline injected at the same site as SGB; and (3) an identical volume of 1% lidocaine injected intramuscularly. Blood samples were drawn before and 30 min after treatment. The distribution of lymphocyte subsets was analyzed, and NK cell activity was measured. Plasma concentrations of epinephrine, norepinephrine, adrenocorticotropic hormone, and cortisol were measured. RESULTS: Any value in the normal saline and intramuscular treatments did not change significantly. After SGB, the plasma concentrations of epinephrine and norepinephrine decreased significantly (P < 0.01), but adrenocorticotropic hormone and cortisol values were unchanged. Increases were observed in the proportion of B cells (from 18.4 +/- 3.0% to 20.0 +/- 3.8%; P < 0.01) and T cells (from 64.2 +/- 4.1% to 67.1 +/- 4.2%; P < 0.01). A decrease in the proportion of NK cells was observed (from 13.4 +/- 2.7% to 9.8 +/- 2.2%; P < 0.01). The proportion of CD4+ cells increased (P < 0.01), and that of CD8+ cells decreased (P < 0.01), so that the CD4+ cell/CD8+ cell ratio increased (P < 0.01). The proportion of CD29+ (helper-inducer T) cells increased (P < 0.05), but that of CD45RA+ (suppressor-inducer T) cells did not change. NK cell activity decreased significantly (from 33.6 +/- 8.3% to 29.1 +/- 7.6%; P < 0.01). CONCLUSIONS: A small but significant alteration in lymphocyte subsets and in NK cell activity by SGB indicates that local sympathetic nerve block may modulate the immune response.  (+info)

Heterogeneous sympathetic innervation influences local myocardial repolarization in normally perfused rabbit hearts. (7/218)

BACKGROUND: Heterogeneity of sympathetic innervation is thought to contribute to the potential for fatal arrhythmia. However, little is known about the effects of heterogeneous innervation on repolarization. METHODS AND RESULTS: To assess this relationship, we measured activation recovery intervals (ARIs) from 64 epicardial sites in 11 rabbits studied 2 weeks after regional denervation produced by phenol and 4 sham-operated rabbits. ARI results were compared with the distribution of sympathetic innervation measured from 3D reconstructions of serial autoradiographs of [(125)I]metaiodobenzylguanidine and (99m)Tc-sestamibi. ARIs were recorded during baseline sinus rhythm, norepinephrine (NE) infusion (0.1 microg. kg(-1). min(-1)), and left stellate ganglion stimulation (SS). NE shortened ARI in 98% of electrodes in the denervated region. The degree of ARI shortening and dispersion increased (P<0.001 and P<0.01, respectively) as denervation became more severe. SS shortened ARI in 30% of electrodes in the denervated area, with increased shortening and dispersion related to increased severity of denervation (P<0.01). SS prolonged ARI in 70% of electrodes in the denervated area, with no correlation with severity of denervation. CONCLUSIONS: The magnitude and dispersion of local repolarization responses are related to the severity of denervation, as well as the type of stimulation: neural (SS) versus humoral (NE). The differences may relate to the concentration of NE released.  (+info)

The early expression of VAChT and VIP in mouse sympathetic ganglia is not induced by cytokines acting through LIFRbeta or CNTFRalpha. (8/218)

Sympathetic ganglia consist of noradrenergic and cholinergic neurons. The cholinergic marker protein vesicular acetylcholine transporter (VAChT) and the neuropeptide vasoactive intestinal peptide (VIP), co-expressed in mature cholinergic sympathetic neurons, are first detectable during embryonic development of rat sympathetic ganglia. However, the subpopulation of cholinergic sympathetic neurons which innervates sweat glands in mammalian footpads starts to express VAChT and VIP during the first postnatal weeks, under the influence of sweat gland-derived signals. In vitro evidence suggests that the sweat gland-derived cholinergic differentiation factor belongs to a group of neuropoietic cytokines, including LIF, CNTF and CT-1, that act through a LIFRbeta-containing cytokine receptor. To investigate whether the embryonic expression of cholinergic properties is elicited by a related cytokine, the expression of VAChT and VIP was analyzed in stellate ganglia of mice deficient for the cytokine receptor subunits LIFRbeta or CNTFRalpha. The density of VAChT- and VIP-immunoreactive cells in stellate ganglia of new-born animals was not different in LIFRbeta(-/-) and CNTFRalpha(-/-) ganglia as compared to ganglia from wild-type mice. These results demonstrate that the early, embryonic expression of VAChT and VIP is not induced by cytokines acting through LIFRbeta- or CNTFRalpha-containing receptors.  (+info)