d,l-fenfluramine response in impulsive personality disorder assessed with [18F]fluorodeoxyglucose positron emission tomography. (1/227)

Reduced serotonergic activity has been associated with impulsive aggression in personality disordered patients in metabolite and pharmacologic challenge studies. This study used positron emission tomography to explore whether reduced serotonergic function occurs in critical brain regions such as orbital frontal and cingulate cortex that, may play a role in modulating aggression. Six impulsive-aggressive patients and five healthy volunteers were evaluated for changes in regional glucose metabolism after administration of the serotonergic releasing agent d,l-fenfluramine (60 mg, p.o.) or placebo. Volunteers demonstrated increases in orbital frontal and adjacent ventral medial frontal cortex, cingulate, and inferior parietal cortex, whereas impulsive-aggressive patients showed no significant increases in glucose metabolism after fenfluramine in any region. Compared with volunteers, patients showed significantly blunted metabolic responses in orbital frontal, adjacent ventral medial and cingulate cortex, but not in inferior parietal lobe. These results are consistent with reduced serotonergic modulation of orbital frontal, ventral medial frontal, and cingulate cortex in patients with impulsive-aggressive personality disorders.  (+info)

Operant methodology in the study of learning. (2/227)

A series of experiments is described in which operant methodology is used to study the effects of drugs on "learning." Emphasis is placed on the technique of repeated acquisition as a behavioral baseline for studying this type of transition state. In this technique, each subject is required to learn a new discrimination each session. Multiple-schedule procedures are also described in which acquisition is compared to a "performance" task, where the discrimination is the same each session. The learning baseline is more sensitive to the disruptive effects of a variety of drugs (e.g., cocaine, d-amphetamine, haloperidol) than is the performance baseline. This general finding obtains across procedural variations and species (pigeons and monkeys). The potential usefulness of these procedures for studying both acute and chronic behavioral toxicity is discussed.  (+info)

Use of dexfenfluramine, fenfluramine and phentermine and the risk of stroke. (3/227)

AIMS: To estimate the incidence of newly diagnosed idiopathic stroke among users of fenfluramine, dexfenfluramine and phentermine compared to obese nonusers. METHODS: We conducted a cohort study with nested case-control analysis utilizing data from the General Practice Research Database in the UK. Eight thousand four hundred and twenty-three subjects aged 69 years or less at the start of follow-up were exposed to at least one of the three study drugs and 17 225 similarly obese subjects were not exposed to any of the study drugs. RESULTS: We identified 45 incident cases of idiopathic CVA in this cohort of subjects. The incidence of CVA among all current users of a diet drug was 1.3/1000 person-years (95% CI 0.5, 3.5). The incidence for current fenfluramine users (n=2) was 2.6/1000 person-years (95% CI 0.7, 9.6), for current dexfenfluramine users (n=1) 1.1/1000 person-years (95% CI 0.3, 3.8), and for current phentermine users 0/1000 person-years (95% CI 0.0, 12.9). The incidence in obese nonusers was 0.6/1000 person-years (95% CI 0.4, 0. 9). The adjusted matched odds ratio (OR) for thrombotic stroke from the case-control analysis comparing current use of a diet drug to nonuse was 2.4 (95% CI 0.6, 9.1). There was only one exposed subject among seven who had haemorrhagic stroke. CONCLUSIONS: The incidence of CVA in generally young obese subjects during use of fenfluramine, dexfenfluramine or phentermine is low. Although we found an OR of 2. 4 comparing users of any of the anorexiants with nonusers, this is based on only three exposed cases and the confidence limits are wide. We conclude that our study does not support a substantial increased risk of stroke attributable to the use of fenfluramine, dexfenfluramine or phentermine.  (+info)

Pharmacologic induction of weight loss to treat type 2 diabetes. (4/227)

OBJECTIVE: Most individuals with type 2 diabetes are overweight, and weight loss for them is an important therapeutic objective. However, usual weight-loss strategies have generally not produced sustained weight loss. Pharmacologic agents to assist weight loss might be useful, but no long-term data on their effectiveness and safety in patients with type 2 diabetes are available. We therefore initiated a 2-year placebo-controlled trial of the weight-loss medications fenfluramine and phentermine in type 2 diabetic subjects. RESEARCH DESIGN AND METHODS: A total of 44 overweight (> 120% ideal body weight) subjects with type 2 diabetes were enrolled in a randomized, placebo-controlled, double-blind trial of fenfluramine and phentermine. All subjects received intensive nutrition counseling, an exercise prescription, and instruction in behavior modification. Subjects were randomly assigned to 20 mg fenfluramine three times a day and 37.5 mg phentermine daily (n = 23) or dual placebos (n = 21). Diabetes medications were adjusted as necessary to achieve glycemic goals. Changes in weight, glycemia, lipemia, and blood pressure were assessed every 2 months, as were adverse events. In September 1997, when fenfluramine was withdrawn from the U.S. market, fenfluramine was stopped in all subjects. Thus the length of drug treatment varied, but 16 subjects (8 in each group) reached 12 months of treatment. Only data obtained before the withdrawal of fenfluramine are included in this report. RESULTS: A study termination, diabetes medications had been reduced in 1 subject in the placebo group (5%) and 11 subjects in the drug treatment group (52%) (P = 0.005). Drug treatment resulted in significant reductions in body weight, BMI, and HbA1c at all time points through 6 months. Changes in weight at 6 months were -2.7 +/- 1.4 kg (mean +/- SEM) with placebo treatment and -9.6 +/- 1.5 kg with drug treatment (P = 0.003). Even though more subjects in the drug treatment group required reductions in diabetes medications, at 6 months, changes in HbA1c were -0.3 +/- 0.2% with placebo treatment and -1.6 +/- 0.3% with drug treatment (P = 0.002). Fasting plasma glucose and triglycerides were significantly reduced at some time points with drug treatment. No serious adverse events attributable to study medications were observed. CONCLUSIONS: Premature study termination decreased the power of our study at later time points. However, our data suggest that weight loss medications are an effective treatment for type 2 diabetes during active weight loss. Whether the benefit persists after weight loss has stopped remains to be determined.  (+info)

Direct agonists for serotonin receptors enhance locomotor function in rats that received neural transplants after neonatal spinal transection. (5/227)

We analyzed whether acute treatment with serotonergic agonists would improve motor function in rats with transected spinal cords (spinal rats) and in rats that received transplants of fetal spinal cord into the transection site (transplant rats). Neonates received midthoracic spinal transections within 48 hr of birth; transplant rats received fetal (embryonic day 14) spinal cord grafts at the time of transection. At 3 weeks, rats began 1-2 months of training in treadmill locomotion. Rats in the transplant group developed better weight-supported stepping than spinal rats. Systemic administration of two directly acting agonists for serotonergic 5-HT(2) receptor subtypes, quipazine and (+/-)-1-[2, 5]-dimethoxy-4-iodophenyl-2-aminopropane), further increased weight-supported stepping in transplant rats. The improvement was dose-dependent and greatest in rats with poor to moderate baseline weight support. In contrast, indirectly acting serotonergic agonists, which block reuptake of 5-HT (sertraline) or release 5-HT and block its reuptake (D-fenfluramine), failed to enhance motor function. Neither direct nor indirect agonists significantly improved locomotion in spinal rats as a group, despite equivalent upregulation of 5-HT(2) receptors in the lumbar ventral horn of lesioned rats with and without transplants. The distribution of immunoreactive serotonergic fibers within and caudal to the transplant did not appear to correspond to restoration of motor function. Our results confirm our previous demonstration that transplants improve motor performance in spinal rats. Additional stimulation with agonists at subtypes of 5-HT receptors produces a beneficial interaction with transplants that further improves motor competence.  (+info)

Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates. Implications for primary pulmonary hypertension. (6/227)

BACKGROUND: Coadministration of phentermine and fenfluramine (phen/fen) effectively treats obesity and possibly addictive disorders. The association of fenfluramine and certain other anorexic agents with serious side effects, such as cardiac valvulopathy and primary pulmonary hypertension (PPH), limits the clinical utility of these drugs. Development of new medications that produce neurochemical effects like phen/fen without causing unwanted side effects would be a significant therapeutic breakthrough. METHODS AND RESULTS: We tested the hypothesis that fenfluramine (and other anorexic agents) might increase the risk of PPH through interactions with serotonin (5-HT) transporters. Because 5-HT transporter proteins in the lung and brain are identical, we examined, in rat brain, the effects of selected drugs on 5-HT efflux in vivo and monoamine transporters in vitro as a generalized index of transporter function. Our data show that drugs known or suspected to increase the risk of PPH (eg, aminorex, fenfluramine, and chlorphentermine) are 5-HT transporter substrates, whereas drugs that have not been shown to increase the risk of PPH are less potent in this regard. CONCLUSIONS: We speculate that medications that are 5-HT transporter substrates get translocated into pulmonary cells where, depending on the degree of drug retention, their intrinsic drug toxicity, and individual susceptibility, PPH could develop as a response to high levels of these drugs or metabolites. Emerging evidence suggests that it is possible to develop transporter substrates devoid of adverse side effects. Such medications could have therapeutic application in the management of obesity, drug dependence, depression, and other disorders.  (+info)

The promotion effect of anorectic drugs on aflatoxin B(1)-induced hepatic preneoplastic foci. (7/227)

The ability of three extensively used anorectic drugs, namely fenfluramine (FN), fluoxetine (FX) and amphetamine (AM), to alter the development of aflatoxin B(1) (AFB(1))-induced gamma-glutamyl-positive (GGT(+)) preneoplastic liver foci was investigated in 135 male weanling F344 rats. Following AFB(1) administration, 15 rats were killed, while the rest were divided into four groups and fed diets containing either FN, FX, AM or control diet, with half of the animals in each group subsequently being killed at 4 weeks and half at 10 weeks. All three anorectic drugs as expected suppressed initial food intake, growth rate, body weight gain and food efficiency. They also tended to suppress body fat mass and to decrease plasma levels of T(3) and T(4). FN significantly (P < 0.05) increased GGT(+) foci number/cm(2) and number/cm(3), while FX significantly increased GGT(+) foci number/cm(2) and the volume fraction of foci. Histopathological staining also revealed that FN- and FX-treated animals had more serious morphological alterations in their liver tissue. In contrast, foci development was, if anything, suppressed by AM feeding. These results indicate that serotoninergic drugs (FN and FX), as opposed to dopaminergic drugs (AM), may have tumor promoter activity, at least for liver tissue.  (+info)

Potent depression of stimulus evoked field potential responses in the medial entorhinal cortex by serotonin. (8/227)

1. The entorhinal cortex (EC), main input structure to the hippocampus, gets innervated by serotonergic terminals from the raphe nuclei and expresses 5-HT-receptors at high density. Using extra- and intracellular recording techniques we here investigated the effects of serotonin on population and cellular responses within the EC. 2. Stimulation in the lateral entorhinal cortex resulted in complex field potential responses in the superficial EC. The potentials are composed of an early antidromic and a late orthodromic component reflecting the efferent and afferent circuitry. 3. Serotonin (5-HT) reduced synaptic potentials of the stimulus evoked extracellular field potential at all concentrations tested (0. 1 - 100 microM; 59%-depression by 10 microM serotonin), while the antidromic response was not significantly changed by up to 50 microM 5-HT. Depression of field potential responses by serotonin was associated with a significant increase in paired-pulse facilitation from 1.15 to 1.88. 4. The effects of serotonin on field potential responses were mimicked by 5-HT1A-receptor agonists (8-OH-DPAT, 5-CT) and partially prevented by the 5-HT1A-receptor antagonist (S-UH-301). Moreover, the 5-HT1A-receptor antagonist WAY100635 reduced the effect of 5-CT. 5. Fenfluramine, a serotonin releaser, mimics the effects of serotonin on stimulus-evoked field potential responses, indicating that synaptically released serotonin can produce the changes in reactivity to afferent stimulation. 6. Depression of isolated AMPA-receptor mediated EPSCs by serotonin as well as fenfluramine was associated with an increase in paired pulse facilitation, indicating a presynaptic locus of action. 7. We conclude that physiological concentrations of serotonin potently suppresses excitatory synaptic transmission in the superficial entorhinal cortex by a presynaptic mechanism.  (+info)