Evidence for an eye-centered spherical representation of the visuomotor map. (1/604)

During visually guided movement, visual coordinates of target location must be transformed into coordinates appropriate for movement. To investigate the representation of this visuomotor coordinate transformation, we examined changes in pointing behavior induced by a local visuomotor remapping. The visual feedback of finger position was limited to one location within the workspace, at which a discrepancy was introduced between the actual and visually perceived finger position. This remapping induced a change in pointing that extended over the entire workspace and was best captured by a spherical coordinate system centered near the eyes.  (+info)

Hypersensitivity in the anterior median eye of a jumping spider. (2/604)

Changes in sensitivity of the photoreceptor cells of the anterior median eye of the jumping spider Menemerus confusus Boes. et Str. have been studied by recording electroretinograms (ERGs) and receptor potentials. The amplitudes of the responses (ERGs and receptor potentials) increase during repetitive stimulation, with a maximum increase at 3-5 s intervals. The sensitivity of the photoreceptor cell is greater for about 60 s following illumination (maximum magnitude at 3-5 s) than it is during complete dark adaptation. This phenomenon, which we call 'hypersensitivity', is lost within one day following surgery in physiological saline. Upon loss of hypersensitivity, the sensitivity decrease during light adaptation is greater than for the normal eye and the small increase of sensitivity following the onset of illumination observed for the normal eye is lost.  (+info)

Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. (3/604)

Circadian rhythms of mammals are entrained by light to follow the daily solar cycle (photoentrainment). To determine whether retinal rods and cones are required for this response, the effects of light on the regulation of circadian wheel-running behavior were examined in mice lacking these photoreceptors. Mice without cones (cl) or without both rods and cones (rdta/cl) showed unattenuated phase-shifting responses to light. Removal of the eyes abolishes this behavior. Thus, neither rods nor cones are required for photoentrainment, and the murine eye contains additional photoreceptors that regulate the circadian clock.  (+info)

Residual vision in the blind field of hemidecorticated humans predicted by a diffusion scatter model and selective spectral absorption of the human eye. (4/604)

The notion of blindsight was recently challenged by evidence that patients with occipital damage and contralateral field defects show residual islands of vision which may be associated with spared neural tissue. However, this possibility could not explain why patients who underwent the resection or disconnection of an entire cerebral hemisphere exhibit some forms of blindsight. We present here a model for the detection of intraocular scatter, which can account for human sensitivity values obtained in the blind field of hemidecorticated patients. The model demonstrates that, under controlled experimental conditions i.e. where the extraocular scatter is eliminated, Lambertian intraocular scatter alone can account for the visual sensitivities reported in these patients. The model also shows that it is possible to obtain a sensitivity in the blind field almost equivalent to that in the good field using the appropriate parameters. Finally, we show with in-vivo spectroreflectometry measurements made in the eyes of our hemidecorticated patients, that the relative drop in middle wavelength sensitivity generally obtained in the blind field of these patients can be explained by selective intraocular spectral absorption.  (+info)

The physiological effects of monocular deprivation and their reversal in the monkey's visual cortex. (5/604)

1. 1127 single units were recorded during oblique penetrations in area 17 of one normal, three monocularly deprived and four reverse sutured monkeys. 2. In all animals most cells outside layer IV c were orientation-selective, and preferred orientation usually shifted from cell to cell in a regular progressive sequence. 3. The presence in layer IV c of non-oriented, monocularly driven units, organized in alternating right-eye and left-eye 'stripes' (LeVay, Hubel & Wiesel, 1975) was confirmed. 4. Early monocular deprivation (2--5 1/2 weeks) caused a strong shift of ocular dominance towards the non-deprived eye. However, even outside layer IV c, neural background and some isolated cells could still be driven from the deprived eye in regularly spaced, narrow columnar regions. In layer IV c the non-deprived eye's stripes were almost three times wider, on average, than the deprived. 5. Later monocular deprivation (11--16 months) had no detectable influence on layer IV c but seemed to cause a small shift in ocular dominance outside IV c. Deprivation for 6 1/4 months in an adult had no such effect. 6. After early reverse suturing (at 5 1/2 weeks) the originally deprived eye gained dominance over cells outside layer IV c just as complete as that originally exercised by the eye that was first non-deprived. 7. The later reverse suturing was delayed, the less effective was recapture by the originally deprived eye. Reversal at 8 weeks led to roughly equal numbers of cells being dominated by each eye; fewer cells became dominated by the newly open eye after reverse suturing at 9 weeks and most of them were non-oriented; reversal at 38 1/2 weeks had no effect. 8. Binocular cells, though rare in reverse sutured animals, always had very similar preferred orientations in the two eyes. The columnar sequences of preferred orientation were not interrupted at the borders of ocular dominance columns. 9. Even within layer IV c there was evidence for re-expansion of physiologically determined ocular dominance stripes. After early reverse suture, stripes for the two eyes became roughly equal in width. Possible mechanisms for these changes are discussed.  (+info)

Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. (6/604)

Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. The NMDA subtype of glutamate receptor is known to exhibit marked changes in subunit composition and functional properties during neural development. The prevailing idea is that NMDA receptor-mediated synaptic responses decrease in duration after the peak of cortical plasticity in rodents. Accordingly, it is believed that shortening of the NMDA receptor-mediated current underlies the developmental reduction of ocular dominance plasticity. However, some previous evidence actually suggests that the duration of NMDA receptor currents decreases before the peak of plasticity. In the present study, we have examined the time course of NMDA receptor changes and how they correlate with the critical period of ocular dominance plasticity in the visual cortex of a highly binocular animal, the ferret. The expression of NMDA receptor subunits NR1, NR2A, and NR2B was examined in animals ranging in age from postnatal day 16 to adult using Western blotting. Functional properties of NMDA receptors in layer IV cortical neurons were studied using whole cell patch-clamp techniques in an in vitro slice preparation of ferret primary visual cortex. We observed a remarkable increase in NR1 and NR2A, but not NR2B, expression after eye opening. The NMDA receptor-mediated synaptic currents showed an abrupt decrease in decay time concurrent with the increase in NR2A subunit expression. Importantly, these changes occurred in parallel with increased ocular dominance plasticity reported in the ferret. In conclusion, molecular changes leading to decreased duration of the NMDA receptor excitatory postsynaptic current may be a requirement for the onset, rather than the end, of the critical period of ocular dominance plasticity.  (+info)

Visual perception: here's mud in your mind's eye. (7/604)

We appear to be unaware of large changes in our visual scene if our attention is temporarily diverted. This suggests that the rich, complete visual scene that we appear to have may be just an illusion.  (+info)

Heterothermal acclimation: an experimental paradigm for studying the control of thermal acclimation in crabs. (8/604)

A method for the study of the control of the attainment of thermal acclimation has been applied to the crabs, Cancer pagurus and Carcinus maenas. Crabs were heterothermally acclimated by using an anterior-posterior partition between two compartments, one at 8 degrees C and the other at 22 degrees C. One compartment held a three-quarter section of the crab including the central nervous system (CNS), eye stalks, and ipsilateral legs; the other held a quarter section including the contralateral legs. Criteria used to assess the acclimation responses were comparisons of muscle plasma membrane fatty acid composition and "fluidity." In both species, the major fatty acids of phosphatidylcholine were 16:0, 18:1, 20:5, and 22:6, whereas phosphatidylethanolamine contained significantly less 16:0 but more 18:0; these fatty acids comprised 80% of the total. Differences in fatty acid composition were demonstrated between fractions obtained from the ipsilateral and contralateral legs from the same heterothermally acclimated individual. In all acclimation states (except 22CNS, phosphatidylcholine fraction), membrane lipid saturation was significantly increased with acclimation at 22 degrees as compared with 8 degrees C. Membrane fluidity was determined by using 1,3-diphenyl-1,3,5 hexatriene (DPH) fluorescence polarization. In both species, membranes from legs held at 8 degrees were more fluid than from legs held at 22 degrees C irrespective of the acclimation temperature of the CNS. Heterothermal acclimation demonstrated that leg muscle membrane composition and fluidity respond primarily to local temperature and were not predominately under central direction. The responses between 8 degrees C- and 22 degrees C-acclimated legs were more pronounced when the CNS was cold-acclimated, so a central influence cannot be excluded.  (+info)