Antimycobacterial activities of isoxyl and new derivatives through the inhibition of mycolic acid synthesis. (1/60)

Isoxyl (ISO), a thiourea (thiocarlide; 4, 4'-diisoamyloxythiocarbanilide), demonstrated potent activity against Mycobacterium tuberculosis H37Rv (MIC, 2.5 micrograms/ml), Mycobacterium bovis BCG (MIC, 0.5 microgram/ml), Mycobacterium avium (MIC, 2.0 microgram/ml), and Mycobacterium aurum A+ (MIC, 2.0 microgram/ml), resulting in complete inhibition of mycobacteria grown on solid media. Importantly, a panel of clinical isolates of M. tuberculosis from different geographical areas with various drug resistance patterns were all sensitive to ISO in the range of 1 to 10 microgram/ml. In a murine macrophage model, ISO exhibited bactericidal killing of viable intracellular M. tuberculosis in a dose-dependent manner (0.05 to 2.50 microgram/ml). The selective action of ISO on mycolic acid synthesis was studied through the use of [1, 2-14C]acetate labeling of M. tuberculosis H37Rv, M. bovis BCG, and M. aurum A+. At its MIC for M. tuberculosis, ISO inhibited the synthesis of both fatty acids and mycolic acids (alpha-mycolates by 91.6%, methoxymycolates by 94.3%, and ketomycolates by 91.1%); at its MIC in M. bovis BCG, ISO inhibited the synthesis of alpha-mycolates by 87.2% and that of ketomycolates by 88.5%; and the corresponding inhibitions for M. aurum A+ were 87.1% for alpha-mycolates, 87.2% for ketomycolates, and 86.5% for the wax-ester mycolates. A comparison with isoniazid (INH) and ethionamide (ETH) demonstrated marked similarity in action, i.e., inhibition of the synthesis of all kinds of mycolic acids. However, unlike INH and ETH, ISO also inhibited the synthesis of shorter-chain fatty acids. ISO showed no acute toxicity against primary macrophage cell cultures as demonstrated by diminution of redox activity. A homologous series of ISO derivatives were synthesized. Most derivatives were as effective or more effective than the parent compound in the agar proportion assay. Thus, these thioureas, like INH and ETH, specifically inhibit mycolic acid synthesis and show promise in counteracting a wide variety of drug-sensitive and -resistant strains of M. tuberculosis.  (+info)

Effects of AIDS and gender on steady-state plasma and intrapulmonary ethionamide concentrations. (2/60)

Ethionamide, 250 mg every 12 h for a total of nine doses, was administered to 40 adult volunteers (10 men with AIDS, 10 healthy men, 10 women with AIDS, and 10 healthy women). Blood was obtained for drug assay prior to administration of the first dose, 2 h after the last dose, and at the completion of standardized bronchoscopy and bronchoalveolar lavage, which were performed 4 h after the last dose. Ethionamide was measured in epithelial lining fluid (ELF) and alveolar cells (AC) using a new mass spectrometric method. The presence of AIDS or gender was without significant effect on the concentrations of ethionamide in plasma, AC, or ELF. Plasma concentrations (mean +/- standard deviation [SD]) were 0.97 +/- 0.65 and 0.65 +/- 0.35 microg/ml at 2 and 4 h after the last dose, respectively, and both values were significantly greater than the concentration of ethionamide in AC (0.38 +/- 0.47 microg/ml) (P < 0. 05). The concentration of ethionamide was significantly greater in ELF (5.63 +/- 3.8 microg/ml) than in AC or plasma at 2 and 4 h and was approximately 10 to 20 times the reported MIC for ethionamide-susceptible strains of Mycobacterium tuberculosis. For all 40 subjects, the ELF/plasma concentration ratios (mean +/- SD) at 2 and 4 h were 8.7 +/- 11.7 and 9.7 +/- 5.6, respectively. We conclude that the absorption of orally administered ethionamide, as measured in this study, was not affected by gender or the presence of AIDS. Ethionamide concentrations were significantly greater in ELF than in plasma or AC, suggesting that substantial antimycobacterial activity resides in this compartment.  (+info)

Activation of the pro-drug ethionamide is regulated in mycobacteria. (3/60)

The anti-tuberculosis drug ethionamide (ETH), which is a structural analog of isoniazid (INH), is known to strongly inhibit mycolic acid synthesis in Mycobacterium tuberculosis. Although several targets have been identified for INH, only speculative information is available concerning ETH. Mutations within the promoter and the coding region of enoyl-acyl carrier protein reductase (InhA) were found to confer resistance to both drugs, thus leading to the impression that INH and ETH may share a common mode of action. However, a notable distinction between the two drugs lies in the lack of cross-resistance in clinical isolates. This may be attributed in part to the fact that the pro-drug INH must be activated via KatG, and no activation step for ETH has yet been described. Here we report the identification of an activator for ETH. The ETH activator (Rv3854c), which we have termed EthA, was found to be homologous to various monooxygenases and induced ETH sensitivity when overexpressed in mycobacteria. Interestingly, the neighboring open reading frame (Rv3855), which was found homologous to transcriptional repressors of the tetR family, led to ETH resistance when overexpressed. In addition, chromosomal inactivation of this gene by transposition led to ETH hypersensitivity. These data strongly suggest that Rv3855, which we have termed EthR, regulates the production of EthA, which subsequently activates the pro-drug ETH. This study opens up new avenues of research relating to ETH activation in mycobacteria, possibly leading to an improved efficacy of ETH and to the generation of new anti-mycobacterial agents.  (+info)

Ethionamide activation and sensitivity in multidrug-resistant Mycobacterium tuberculosis. (4/60)

Ethionamide (ETA) is an important component of second-line therapy for the treatment of multidrug-resistant tuberculosis. Synthesis of radiolabeled ETA and an examination of drug metabolites formed by whole cells of Mycobacterium tuberculosis (MTb) have allowed us to demonstrate that ETA is activated by S-oxidation before interacting with its cellular target. ETA is metabolized by MTb to a 4-pyridylmethanol product remarkably similar in structure to that formed by the activation of isoniazid by the catalase-peroxidase KatG. We have demonstrated that overproduction of Rv3855 (EtaR), a putative regulatory protein from MTb, confers ETA resistance whereas overproduction of an adjacent, clustered monooxygenase (Rv3854c, EtaA) confers ETA hypersensitivity. Production of EtaA appears to be negatively regulated by EtaR and correlates directly with [(14)C]ETA metabolism, suggesting that EtaA is the activating enzyme responsible for thioamide oxidation and subsequent toxicity. Coding sequence mutations in EtaA were found in 11 of 11 multidrug-resistant MTb patient isolates from Cape Town, South Africa. These isolates showed broad cross-resistance to thiocarbonyl containing drugs including ETA, thiacetazone, and thiocarlide.  (+info)

Clinical aspects of atypical mycobacterial infection. (5/60)

SUMMARY: Atypical mycobacterial infections may give rise to various clinical difficulties. Case reports of six patients--three adult patients with pulmonary lesions, two children with cervical lymphadentis and one patient in whom the atypical mycobacterium appeared to be present as a commensal--illustrate these difficulties. Determination of the significance of the organism and differentiation of condition from tuberculosis and others requires consideration of the clinical picture, the results of skin testing, histologic features and cultural characteristics. Three patients, including the two children, were treated with a combination of surgery and chemotherapy, with satisfactory results. An elderly patient with chronic bronchitis and a pulmonary infection due to M. kansasii was treated successfully with antiuberculosis agents alone. Chemotherapy is being tried on a fifth patient with cavitary disease due to M. intracellulare, but is seems likely that an operation will also be required.  (+info)

Pharmacokinetics of ethionamide administered under fasting conditions or with orange juice, food, or antacids. (6/60)

This study was conducted in order to (i) determine the effect of food, orange juice, or antacids on the absorption of a single oral 500-mg dose of ethionamide (ETA) in healthy volunteers, including an assessment of bioequivalence, and (ii) determine ETA population pharmacokinetic (PK) parameters. The pharmacokinetics of ETA in serum was determined for 12 healthy males and females in a randomized, four-period crossover study. Volunteers received single 500-mg doses of ETA either on an empty stomach (reference) or with food, orange juice, or antacids. Serum samples were collected for 48 h and assayed by high-performance liquid chromatography. Data were analyzed by noncompartmental and population methods. Mean test/reference ratios and 90% confidence intervals were determined. No statistically significant differences were seen in the maximum concentration of ETA (C(max)), time to maximum concentration (T(max)), or area under the concentration-time curve from 0 h to infinity (AUC(0-infinity)) between the four treatments (P > 0.05 by analysis of variance). The least-squares mean ratios (with confidence intervals in parentheses) for C(max) were 105% (81.2 to 135%) after orange juice, 94% (72.8 to 121%) after food, and 88% (68.4 to 114%) after antacids. The least-squares mean ratios (with confidence intervals is in parentheses) for AUC(0-infinity) were 91% (72.7 to 115%) after orange juice, 96% (76.4 to 121%) after food, and 95% (75.5 to 120%) after antacids. The mean T(max) was slightly prolonged following antacid or food administration (2.3 to 2.6 h) compared to administration on an empty stomach or with juice (1.7 to 1.9 h). The median population PK parameters were as follows: K(a) = 0.37 to 0.48 h(-1), V/F = 2.0 to 2.8 liters/kg, CL/F = 56.5 to 72.2 liters/h, and terminal half-life = 1.7 to 2.1 h, where K(a) is the absorption rate constant, V is the volume of distribution, and CL is clearance. The PK behavior of ETA was not significantly modified by the different conditions studied. Mean ratios for AUC ranged from 0.91 to 0.96 for the orange juice, food, and antacid treatments, indicating a minimal effect on relative bioavailability. ETA can, therefore, be administered with food if tolerance is an issue.  (+info)

The antituberculosis drug ethionamide is activated by a flavoprotein monooxygenase. (7/60)

Ethionamide (ETA), a prodrug that must undergo metabolic activation to exert its cytotoxic effects, is a second line drug against tuberculosis, a disease that infects more than a third of the world's population. It has been proposed, on the basis of genetic experiments, that ETA is activated in Mycobacterium tuberculosis by the protein encoded by the gene Rv3854c (DeBarber, A. E., Mdluli, K., Bosman, M., Bekker, L.-G., and Barry, C. E., III (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 9677-9682; Baulard, A. R., Betts, J. C., Engohang-Ndong, J., Quan, S., McAdam, R. A., Brennan, P. J., Locht, C., and Besra, G. S. (2000) J. Biol. Chem. 275, 28326-28331). We report here the expression, purification, and characterization of the protein encoded by this gene. Our results establish that the enzyme (EtaA) is an FAD-containing enzyme that oxidizes ETA to the corresponding S-oxide. The S-oxide, which has a similar biological activity as ETA, is further oxidized by EtaA to 2-ethyl-4-amidopyridine, presumably via the unstable doubly oxidized sulfinic acid intermediate. This flavoenzyme also oxidizes thiacetazone, thiobenzamide, and isothionicotinamide and thus is probably responsible, as suggested by the observation of crossover resistance, for the oxidative activation of other thioamide antitubercular drugs.  (+info)

Activities of moxifloxacin alone and in combination with other antimicrobial agents against multidrug-resistant Mycobacterium tuberculosis infection in BALB/c mice. (8/60)

The activity of moxifloxacin was enhanced by the addition of ethionamide but not by that of cycloserine, thiacetazone, capreomycin, para-aminosalicylic acid, or linezolid in BALB/c mice infected with a strain of Mycobacterium tuberculosis resistant to isoniazid, rifampin, and six other drugs. These observations are important for the therapy of multidrug-resistant tuberculosis.  (+info)