Preliminary findings in germinal vesicle transplantation of immature human oocytes. (1/139)

Transplanting a germinal vesicle (GV) from an aged woman's oocyte into a younger ooplasm has been proposed as a possible way to reduce the incidence of oocyte aneuploidy which is considered to be responsible for age-related infertility. In this study, we have assessed the efficiency of each step involved in nuclear transplantation-specifically cell survival, nuclear-cytoplasmic reconstitution, and the capacity of the reconstituted oocytes for in-vitro maturation. In addition, we have evaluated the fertilizability and karyotypic status of the manipulated oocytes by intracytoplasmic sperm injection (ICSI) and fluorescent in-situ hybridization technique respectively. Nuclear transplantation was accomplished with an overall efficiency of 73%. Due to the limited availability of materials, most nuclear transplantation procedures were performed between sibling oocytes. The maturation rate of 62% following reconstitution was comparable with that of control oocytes, as was the incidence of aneuploidy among the reconstituted oocytes. The ICSI results of the reconstituted oocytes yielded a survival rate of 77%, a fertilization rate of 52%, and a satisfactory early embryonic cleavage. Furthermore, in a limited number of observations where the nucleus of an aged oocyte was transferred into a younger ooplasm, there was an appropriate chromosomal segregation. These findings demonstrate that human oocytes reconstituted with GV nuclei are able to undergo maturation, fertilization, and early embryo cleavage, and maintain a normal ploidy. Although in-vitro maturation seems to be a limiting step, this technique would allow us to investigate further the nuclear-ooplasmic relationship during meiotic maturation.  (+info)

Inferring sub-cellular localization through automated lexical analysis. (2/139)

MOTIVATION: The SWISS-PROT sequence database contains keywords of functional annotations for many proteins. In contrast, information about the sub-cellular localization is available for only a few proteins. Experts can often infer localization from keywords describing protein function. We developed LOCkey, a fully automated method for lexical analysis of SWISS-PROT keywords that assigns sub-cellular localization. With the rapid growth in sequence data, the biochemical characterisation of sequences has been falling behind. Our method may be a useful tool for supplementing functional information already automatically available. RESULTS: The method reached a level of more than 82% accuracy in a full cross-validation test. Due to a lack of functional annotations, we could infer localization for fewer than half of all proteins in SWISS-PROT. We applied LOCkey to annotate five entirely sequenced proteomes, namely Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (worm), Drosophila melanogaster (fly), Arabidopsis thaliana (plant) and a subset of all human proteins. LOCkey found about 8000 new annotations of sub-cellular localization for these eukaryotes.  (+info)

Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. (3/139)

MOTIVATION: The subcellular location of a protein is closely correlated to its function. Thus, computational prediction of subcellular locations from the amino acid sequence information would help annotation and functional prediction of protein coding genes in complete genomes. We have developed a method based on support vector machines (SVMs). RESULTS: We considered 12 subcellular locations in eukaryotic cells: chloroplast, cytoplasm, cytoskeleton, endoplasmic reticulum, extracellular medium, Golgi apparatus, lysosome, mitochondrion, nucleus, peroxisome, plasma membrane, and vacuole. We constructed a data set of proteins with known locations from the SWISS-PROT database. A set of SVMs was trained to predict the subcellular location of a given protein based on its amino acid, amino acid pair, and gapped amino acid pair compositions. The predictors based on these different compositions were then combined using a voting scheme. Results obtained through 5-fold cross-validation tests showed an improvement in prediction accuracy over the algorithm based on the amino acid composition only. This prediction method is available via the Internet.  (+info)

In vivo noninvasive identification of cell composition of intimal lesions: a combined approach with ultrasonography and immunocytochemistry. (4/139)

PURPOSE: We investigated whether differences in cellular composition of the shoulder region of carotid plaque, a cell-rich, debris-free area, can be revealed with computer-driven analysis of ultrasound scans. METHODS: In 26 patients referred for carotid endarterectomy, the shoulder region of plaque eligible for surgical removal was identified with ultrasound scanning. Digital images were obtained and evaluated with a specially developed computer-driven system (Medical Image Processing [MIP]). The gray level distribution of the region of interest (ROI), along with some statistical parameters exploring the spatial distribution of pixels, such as entropy and second angular moment, were analyzed. In the specimen retrieved at surgery, the area corresponding to the ROI was selected. Cryosections were tested at immunocytochemistry with monoclonal antibodies specific to smooth muscle cells (SMCs), macrophages), and lymphocytes. Computerized image analysis was performed to quantify each cellular component of the lesion. RESULTS: Mean gray levels were related positively to the content of SMCs (r = 0.576, P =.002) and negatively to the content of macrophages (r = -0.555, P =.003). Lymphocytes did not show any correlation. Prevalence of SMCs, expressed as the ratio SMC/(SMC + macrophages), was related positively with entropy (r = 0.517, P =.007) and negatively with the second angular moment (r = -0.422, P =.032). The quartiles of gray level were useful for detecting significant differences in terms of cellular composition. CONCLUSIONS: Some cellular features of the shoulder region of plaque are associated with specific videodensitometric patterns evaluated with MIP. This approach enables in vivo noninvasive prediction and monitoring of cell composition of the shoulder region, and could be extended to study of the thickened intima.  (+info)

Prediction of protein subcellular locations using fuzzy k-NN method. (5/139)

MOTIVATION: Protein localization data are a valuable information resource helpful in elucidating protein functions. It is highly desirable to predict a protein's subcellular locations automatically from its sequence. RESULTS: In this paper, fuzzy k-nearest neighbors (k-NN) algorithm has been introduced to predict proteins' subcellular locations from their dipeptide composition. The prediction is performed with a new data set derived from version 41.0 SWISS-PROT databank, the overall predictive accuracy about 80% has been achieved in a jackknife test. The result demonstrates the applicability of this relative simple method and possible improvement of prediction accuracy for the protein subcellular locations. We also applied this method to annotate six entirely sequenced proteomes, namely Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Oryza sativa, Arabidopsis thaliana and a subset of all human proteins. AVAILABILITY: Supplementary information and subcellular location annotations for eukaryotes are available at http://166.111.30.65/hying/fuzzy_loc.htm  (+info)

Translational polymorphism as a potential source of plant proteins variety in Arabidopsis thaliana. (6/139)

MOTIVATION: According to scanning model, 40S ribosomal subunits can either initiate translation at start AUG codon in suboptimal context or miss it and initiate translation at downstream AUG(s), thereby producing several proteins. Functional significance of such a protein translational polymorphism is still unknown. RESULTS: We compared predicted subcellular localizations of annotated Arabidopsis thaliana proteins and their potential N-terminally truncated forms started from the nearest downstream in-frame AUG codons. It was found that localizations of full and N-truncated proteins differ in many cases: 12.2% of N-truncated proteins acquired sorting signals de novo and 5.7% changed their predicted subcellular locations (mitochodria, chloroplast or secretory pathway). It is likely that the in-frame downstream AUGs may be frequently utilized to synthesize proteins possessing new functional properties and such a translational polymorphism may serve as an important source of cellular and organelle proteomes.  (+info)

Predicting subcellular localization of proteins using machine-learned classifiers. (7/139)

MOTIVATION: Identifying the destination or localization of proteins is key to understanding their function and facilitating their purification. A number of existing computational prediction methods are based on sequence analysis. However, these methods are limited in scope, accuracy and most particularly breadth of coverage. Rather than using sequence information alone, we have explored the use of database text annotations from homologs and machine learning to substantially improve the prediction of subcellular location. RESULTS: We have constructed five machine-learning classifiers for predicting subcellular localization of proteins from animals, plants, fungi, Gram-negative bacteria and Gram-positive bacteria, which are 81% accurate for fungi and 92-94% accurate for the other four categories. These are the most accurate subcellular predictors across the widest set of organisms ever published. Our predictors are part of the Proteome Analyst web-service.  (+info)

Morphological and physiological changes induced by high hydrostatic pressure in exponential- and stationary-phase cells of Escherichia coli: relationship with cell death. (8/139)

The relationship between a loss of viability and several morphological and physiological changes was examined with Escherichia coli strain J1 subjected to high-pressure treatment. The pressure resistance of stationary-phase cells was much higher than that of exponential-phase cells, but in both types of cell, aggregation of cytoplasmic proteins and condensation of the nucleoid occurred after treatment at 200 MPa for 8 min. Although gross changes were detected in these cellular structures, they were not related to cell death, at least for stationary-phase cells. In addition to these events, exponential-phase cells showed changes in their cell envelopes that were not seen for stationary-phase cells, namely physical perturbations of the cell envelope structure, a loss of osmotic responsiveness, and a loss of protein and RNA to the extracellular medium. Based on these observations, we propose that exponential-phase cells are inactivated under high pressure by irreversible damage to the cell membrane. In contrast, stationary-phase cells have a cytoplasmic membrane that is robust enough to withstand pressurization up to very intense treatments. The retention of an intact membrane appears to allow the stationary-phase cell to repair gross changes in other cellular structures and to remain viable at pressures that are lethal to exponential-phase cells.  (+info)