A novel mutation in the coding region of the prosaposin gene leads to a complete deficiency of prosaposin and saposins, and is associated with a complex sphingolipidosis dominated by lactosylceramide accumulation. (1/29)

A fatal infantile storage disorder with hepatosplenomegaly and severe neurological disease is described. Sphingolipids, including monohexosylceramides (mainly glucosylceramide), dihexosylceramides (mainly lactosylceramide), globotriaosyl ceramide, sulphatides, ceramides and globotetraosyl ceramide, were stored in the tissues. In general, cholesterol and sphingomyelin levels were unaltered. The storage process was generalized and affected a number of cell types, with histiocytes, which infiltrated a number of visceral organs and the brain, especially involved. The ultrastructure of the storage lysosomes was membranous with oligolamellar, mainly vesicular, profiles. Infrequently, there were Gaucher-like lysosomes in histiocytes. The neuropathology was severe and featured neuronal storage and loss with a massive depopulation of cortical neurons and pronounced fibrillary astrocytosis. There was a paucity of myelin and stainable axons in the white matter with signs of active demyelination. Immunohistochemical investigations indicated that saposins A, B, C and D were all deficient. The patient was homozygous for a 1 bp deletion (c.803delG) within the SAP-B domain of the prosaposin gene which leads to a frameshift and premature stop codon. In the heterozygous parents, mutant cDNA was detected by amplification refractory mutation analysis in the nuclear, but not the cytoplasmic, fraction of fibroblast RNA, indicating that the mutant mRNA was rapidly degraded. The storage process in the proband resembled that of a published case from an unrelated family. Saposins were also deficient in this case, leading to its reclassification as prosaposin deficiency, and her mother was found to be a carrier for the same c.803delG mutation. Both of the investigated families came from the same district of eastern Slovakia.  (+info)

A major step on the road to understanding a unique posttranslational modification and its role in a genetic disease. (2/29)

The posttranslational conversion of cysteine to C(alpha)-formylglycine in the catalytic site of mammalian sulfatases is deficient in the rare but devastating disorder multiple sulfatase deficiency (MSD). Two papers in this issue of Cell report the cloning of a gene responsible for this activity.  (+info)

Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. (3/29)

C(alpha)-formylglycine (FGly) is the catalytic residue in the active site of eukaryotic sulfatases. It is posttranslationally generated from a cysteine in the endoplasmic reticulum. The genetic defect of FGly formation causes multiple sulfatase deficiency (MSD), a lysosomal storage disorder. We purified the FGly generating enzyme (FGE) and identified its gene and nine mutations in seven MSD patients. In patient fibroblasts, the activity of sulfatases is partially restored by transduction of FGE encoding cDNA, but not by cDNA carrying an MSD mutation. The gene encoding FGE is highly conserved among pro- and eukaryotes and has a paralog of unknown function in vertebrates. FGE is localized in the endoplasmic reticulum and is predicted to have a tripartite domain structure.  (+info)

The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. (4/29)

In multiple sulfatase deficiency (MSD), a human inherited disorder, the activities of all sulfatases are impaired due to a defect in posttranslational modification. Here we report the identification, by functional complementation using microcell-mediated chromosome transfer, of a gene that is mutated in MSD and is able to rescue the enzymatic deficiency in patients' cell lines. Functional conservation of this gene was observed among distantly related species, suggesting a critical biological role. Coexpression of SUMF1 with sulfatases results in a strikingly synergistic increase of enzymatic activity, indicating that SUMF1 is both an essential and a limiting factor for sulfatases. These data have profound implications on the feasibility of enzyme replacement therapy for eight distinct inborn errors of metabolism.  (+info)

Endocytic trafficking of glycosphingolipids in sphingolipid storage diseases. (5/29)

In this review, recent studies of membrane lipid transport in sphingolipid (SL) storage disease (SLSD) fibroblasts are summarized. Several fluorescent glycosphingolipid (GSL) analogues are internalized from the plasma membrane via caveolae and are subsequently transported to the Golgi complex of normal fibroblasts, while in 10 different SLSD cell types, these lipids accumulate in endosomes and lysosomes. Additional studies have shown that cholesterol homeostasis is perturbed in multiple SLSDs secondary to accumulation of endogenous SLs, and that mis-targeting of the GSLs is regulated by cellular cholesterol. Golgi targeting of GSLs internalized via caveolae is dependent on microtubules and phosphoinositide 3-kinase(s) and is inhibited by expression of dominant-negative rab7 and rab9 constructs. Overexpression of wild-type rab7 or rab9 (but not rab11) in Niemann-Pick C fibroblasts results in correction of lipid trafficking defects, including restoration of Golgi targeting of fluorescent lactosylceramide and endogenous GM1 ganglioside (monitored by the transport of fluorescent cholera toxin), and a dramatic reduction in accumulation of intracellular cholesterol. These results suggest an approach for restoring normal lipid trafficking in this, and perhaps other, SLSD cell types, and may provide a basis for future therapy of these diseases.  (+info)

Biochemistry of glycosphingolipid storage disorders: implications for therapeutic intervention. (6/29)

The physiological importance of the degradative processes in lysosomes is revealed by the existence of at least 40 distinct inherited diseases, the so-called lysosomal storage disorders. Most of these diseases are caused by a deficiency in a single lysosomal enzyme, or essential cofactor, and result in the lysosomal accumulation of one, or sometimes several, natural compounds. The most prevalent subgroup of the lysosomal storage disorders is formed by the sphingolipidoses, inherited disorders that are characterized by excessive accumulation of one or multiple (glyco)sphingolipids. The biology of glycosphingolipids has been extensively discussed in other contributions during this symposium. This review will therefore focus in depth on (type 1) Gaucher disease, a prototypical glycosphingolipidosis. The elucidation of the primary genetic defect, being a deficiency in the lysosomal glucocerebrosidase, is described. Characterization of glucocerebrosidase at protein and gene level has subsequently opened avenues for therapeutic intervention. The development of successful enzyme replacement therapy for type 1 Gaucher disease is discussed. Attention is also paid to the alternative approach of substrate modulation using orally administered inhibitors of glucosylceramide synthesis. Novel developments about the monitoring of age of onset, progression and correction of disease are described. The remaining challenges about pathophysiology of glycosphingolipidoses are discussed in view of further improvements in therapy for these debilitating disorders.  (+info)

Enzyme replacement therapy: conception, chaos and culmination. (7/29)

Soon after the enzymatic defects in Gaucher disease and in Niemann-Pick disease were discovered, enzyme replacement or enzyme supplementation was proposed as specific treatment for patients with these and related metabolic storage disorders. While relatively straightforward in concept, successful implementation of this approach required many years of intensive effort to bring it to fruition. Procedures were eventually developed to produce sufficient quantities of the requisite enzymes for clinical trials and to target therapeutic enzymes to lipid-storing cells. These achievements led to the development of effective enzyme replacement therapy for patients with Gaucher disease and for Fabry disease. These demonstrations provide strong incentive for the application of this strategy for the treatment of many human disorders of metabolism.  (+info)

Gene therapy: prospects for glycolipid storage diseases. (8/29)

Lysosomal storage diseases comprise a group of about 40 disorders, which in most cases are due to the deficiency of a lysosomal enzyme. Since lysosomal enzymes are involved in the degradation of various compounds, the diseases can be further subdivided according to which pathway is affected. Thus, enzyme deficiencies in the degradation pathway of glycosaminoglycans cause mucopolysaccharidosis, and deficiencies affecting glycopeptides cause glycoproteinosis. In glycolipid storage diseases enzymes are deficient that are involved in the degradation of sphingolipids. Mouse models are available for most of these diseases, and some of these mouse models have been used to study the applicability of in vivo gene therapy. We review the rationale for gene therapy in lysosomal disorders and present data, in particular, about trials in an animal model of metachromatic leukodystrophy. The data of these trials are compared with those obtained with animal models of other lysosomal diseases.  (+info)